start on graded R-modules
This commit is contained in:
parent
27bd4bc72a
commit
f96c92b72d
2 changed files with 167 additions and 7 deletions
|
@ -1,7 +1,65 @@
|
||||||
/-
|
/- Graded modules -/
|
||||||
Copyright (c) 2016 Egbert Rijke. All rights reserved.
|
|
||||||
Released under Apache 2.0 license as described in the file LICENSE.
|
|
||||||
Authors: Egbert Rijke
|
|
||||||
|
|
||||||
Graded modules and rings.
|
-- Author: Floris van Doorn
|
||||||
-/
|
|
||||||
|
import ..algebra.module
|
||||||
|
|
||||||
|
open algebra eq left_module pointed function equiv is_equiv is_trunc prod
|
||||||
|
|
||||||
|
namespace left_module
|
||||||
|
|
||||||
|
definition graded (str : Type) (I : Type) : Type := I → str
|
||||||
|
definition graded_module (R : Ring) : Type → Type := graded (LeftModule R)
|
||||||
|
|
||||||
|
variables {R : Ring} {I : Type} {M M₁ M₂ M₃ : graded_module R I}
|
||||||
|
|
||||||
|
structure graded_module_hom (M₁ M₂ : graded_module R I) : Type :=
|
||||||
|
mk' :: (d : I → I)
|
||||||
|
(fn : Π⦃i j : I⦄ (p : d i = j), M₁ i →lm M₂ j)
|
||||||
|
|
||||||
|
abbreviation degree := @graded_module_hom.d
|
||||||
|
attribute graded_module_hom.fn [coercion]
|
||||||
|
|
||||||
|
definition graded_module_hom.mk {M₁ M₂ : graded_module R I} (d : I → I)
|
||||||
|
(fn : Πi, M₁ i →lm M₂ (d i)) : graded_module_hom M₁ M₂ :=
|
||||||
|
graded_module_hom.mk' d (λi j p, homomorphism_of_eq (ap M₂ p) ∘lm fn i)
|
||||||
|
|
||||||
|
notation M₁ ` →gm ` M₂ := graded_module_hom M₁ M₂
|
||||||
|
|
||||||
|
-- definition graded_module_hom (d : I → I) (M₁ M₂ : graded_module R I) : Type :=
|
||||||
|
-- Π⦃i j : I⦄ (p : d i = j), M₁ i →lm M₂ j
|
||||||
|
exit
|
||||||
|
-- notation M₁ ` →[` d `] ` M₂ := graded_module_hom d M₁ M₂
|
||||||
|
variables {d d' d₁ d₂ d₃ : I → I} {f' : M₂ →[d'] M₃} {f : M₁ →[d] M₂} {f₁ : M₁ →[d₁] M₂}
|
||||||
|
{f₂ : M₁ →[d₂] M₂} {f₃ : M₁ →[d₃] M₂}
|
||||||
|
|
||||||
|
definition graded_module_hom_ap (f : M₁ →[d] M₂) {i : I} (x : M₁ i) : M₂ (d i) :=
|
||||||
|
f idp x
|
||||||
|
|
||||||
|
abbreviation gap := @graded_module_hom_ap
|
||||||
|
|
||||||
|
definition is_exact_gmod (f : M₁ →[d] M₂) (f' : M₂ →[d'] M₃) : Type :=
|
||||||
|
Π{i j k} (p : d i = j) (q : d' j = k), is_exact_mod (f p) (f' q)
|
||||||
|
|
||||||
|
structure exact_couple (M₁ M₂ : graded_module R I) : Type :=
|
||||||
|
(di dj dk : I → I)
|
||||||
|
( i : M₁ →[di] M₁) (j : M₁ →[dj] M₂) (k : M₂ →[dk] M₁)
|
||||||
|
( exact_ij : is_exact_gmod i j)
|
||||||
|
( exact_jk : is_exact_gmod j k)
|
||||||
|
( exact_ki : is_exact_gmod k i)
|
||||||
|
|
||||||
|
variables {di dj dk : I → I}
|
||||||
|
{i : M₁ →[di] M₁} {j : M₁ →[dj] M₂} {k : M₂ →[dk] M₁}
|
||||||
|
( exact_ij : is_exact_gmod i j)
|
||||||
|
( exact_jk : is_exact_gmod j k)
|
||||||
|
( exact_ki : is_exact_gmod k i)
|
||||||
|
|
||||||
|
namespace derived_couple
|
||||||
|
|
||||||
|
definition d : graded_module_hom _ M₂ M₂ :=
|
||||||
|
_
|
||||||
|
|
||||||
|
end derived_couple
|
||||||
|
|
||||||
|
|
||||||
|
end left_module
|
||||||
|
|
|
@ -8,7 +8,7 @@ Modules prod vector spaces over a ring.
|
||||||
(We use "left_module," which is more precise, because "module" is a keyword.)
|
(We use "left_module," which is more precise, because "module" is a keyword.)
|
||||||
-/
|
-/
|
||||||
import algebra.field ..move_to_lib
|
import algebra.field ..move_to_lib
|
||||||
open is_trunc pointed function sigma eq algebra
|
open is_trunc pointed function sigma eq algebra prod is_equiv equiv
|
||||||
|
|
||||||
structure has_scalar [class] (F V : Type) :=
|
structure has_scalar [class] (F V : Type) :=
|
||||||
(smul : F → V → V)
|
(smul : F → V → V)
|
||||||
|
@ -219,6 +219,108 @@ section
|
||||||
end
|
end
|
||||||
end
|
end
|
||||||
|
|
||||||
|
section
|
||||||
|
variables {M M₁ M₂ M₃ : LeftModule R}
|
||||||
|
definition to_respect_zero (φ : M₁ →lm M₂) : φ 0 = 0 :=
|
||||||
|
respect_zero φ
|
||||||
|
|
||||||
|
definition is_exact_mod (f : M₁ →lm M₂) (f' : M₂ →lm M₃) : Type :=
|
||||||
|
@is_exact M₁ M₂ M₃ (homomorphism_fn f) (homomorphism_fn f')
|
||||||
|
|
||||||
|
definition homomorphism_compose (f' : M₂ →lm M₃) (f : M₁ →lm M₂) : M₁ →lm M₃ :=
|
||||||
|
homomorphism.mk (f' ∘ f) !is_module_hom_comp
|
||||||
|
|
||||||
|
variable (M)
|
||||||
|
definition homomorphism_id [constructor] [refl] : M →lm M :=
|
||||||
|
homomorphism.mk (@id M) !is_module_hom_id
|
||||||
|
variable {M}
|
||||||
|
|
||||||
|
abbreviation lmid [constructor] := homomorphism_id M
|
||||||
|
infixr ` ∘lm `:75 := homomorphism_compose
|
||||||
|
|
||||||
|
structure isomorphism (M₁ M₂ : LeftModule R) :=
|
||||||
|
(to_hom : M₁ →lm M₂)
|
||||||
|
(is_equiv_to_hom : is_equiv to_hom)
|
||||||
|
|
||||||
|
infix ` ≃lm `:25 := isomorphism
|
||||||
|
attribute isomorphism.to_hom [coercion]
|
||||||
|
attribute isomorphism.is_equiv_to_hom [instance]
|
||||||
|
attribute isomorphism._trans_of_to_hom [unfold 4]
|
||||||
|
|
||||||
|
definition equiv_of_isomorphism [constructor] (φ : M₁ ≃lm M₂) : M₁ ≃ M₂ :=
|
||||||
|
equiv.mk φ !isomorphism.is_equiv_to_hom
|
||||||
|
|
||||||
|
definition pequiv_of_isomorphism [constructor] (φ : M₁ ≃lm M₂) : M₁ ≃* M₂ :=
|
||||||
|
pequiv_of_equiv (equiv_of_isomorphism φ) (to_respect_zero φ)
|
||||||
|
|
||||||
|
definition LeftModule.struct2 [instance] (M : LeftModule R) : left_module R M :=
|
||||||
|
LeftModule.struct M
|
||||||
|
|
||||||
|
definition homomorphism.mk' (φ : M₁ → M₂) (p : Π(g₁ g₂ : M₁), φ (g₁ + g₂) = φ g₁ + φ g₂)
|
||||||
|
(q : Π(r : R) x, φ (r • x) = r • φ x) : M₁ →lm M₂ :=
|
||||||
|
homomorphism.mk φ (p, q)
|
||||||
|
|
||||||
|
definition isomorphism_of_equiv [constructor] (φ : M₁ ≃ M₂)
|
||||||
|
(p : Π(g₁ g₂ : M₁), φ (g₁ + g₂) = φ g₁ + φ g₂)
|
||||||
|
(q : Πr x, φ (r • x) = r • φ x) : M₁ ≃lm M₂ :=
|
||||||
|
isomorphism.mk (homomorphism.mk φ (p, q)) !to_is_equiv
|
||||||
|
|
||||||
|
definition isomorphism_of_eq [constructor] {M₁ M₂ : LeftModule R} (p : M₁ = M₂ :> LeftModule R)
|
||||||
|
: M₁ ≃lm M₂ :=
|
||||||
|
isomorphism_of_equiv (equiv_of_eq (ap LeftModule.carrier p))
|
||||||
|
begin intros, induction p, reflexivity end
|
||||||
|
begin intros, induction p, reflexivity end
|
||||||
|
|
||||||
|
-- definition pequiv_of_isomorphism_of_eq {M₁ M₂ : LeftModule R} (p : M₁ = M₂ :> LeftModule R) :
|
||||||
|
-- pequiv_of_isomorphism (isomorphism_of_eq p) = pequiv_of_eq (ap pType_of_LeftModule p) :=
|
||||||
|
-- begin
|
||||||
|
-- induction p,
|
||||||
|
-- apply pequiv_eq,
|
||||||
|
-- fapply pmap_eq,
|
||||||
|
-- { intro g, reflexivity},
|
||||||
|
-- { apply is_prop.elim}
|
||||||
|
-- end
|
||||||
|
|
||||||
|
definition to_ginv [constructor] (φ : M₁ ≃lm M₂) : M₂ →lm M₁ :=
|
||||||
|
homomorphism.mk φ⁻¹
|
||||||
|
abstract begin
|
||||||
|
split,
|
||||||
|
intro g₁ g₂, apply eq_of_fn_eq_fn' φ,
|
||||||
|
rewrite [respect_add φ, +right_inv φ],
|
||||||
|
intro r x, apply eq_of_fn_eq_fn' φ,
|
||||||
|
rewrite [to_respect_smul φ, +right_inv φ],
|
||||||
|
end end
|
||||||
|
|
||||||
|
variable (M)
|
||||||
|
definition isomorphism.refl [refl] [constructor] : M ≃lm M :=
|
||||||
|
isomorphism.mk lmid !is_equiv_id
|
||||||
|
variable {M}
|
||||||
|
|
||||||
|
definition isomorphism.symm [symm] [constructor] (φ : M₁ ≃lm M₂) : M₂ ≃lm M₁ :=
|
||||||
|
isomorphism.mk (to_ginv φ) !is_equiv_inv
|
||||||
|
|
||||||
|
definition isomorphism.trans [trans] [constructor] (φ : M₁ ≃lm M₂) (ψ : M₂ ≃lm M₃) : M₁ ≃lm M₃ :=
|
||||||
|
isomorphism.mk (ψ ∘lm φ) !is_equiv_compose
|
||||||
|
|
||||||
|
definition isomorphism.eq_trans [trans] [constructor]
|
||||||
|
{M₁ M₂ : LeftModule R} {M₃ : LeftModule R} (φ : M₁ = M₂) (ψ : M₂ ≃lm M₃) : M₁ ≃lm M₃ :=
|
||||||
|
proof isomorphism.trans (isomorphism_of_eq φ) ψ qed
|
||||||
|
|
||||||
|
definition isomorphism.trans_eq [trans] [constructor]
|
||||||
|
{M₁ : LeftModule R} {M₂ M₃ : LeftModule R} (φ : M₁ ≃lm M₂) (ψ : M₂ = M₃) : M₁ ≃lm M₃ :=
|
||||||
|
isomorphism.trans φ (isomorphism_of_eq ψ)
|
||||||
|
|
||||||
|
postfix `⁻¹ˡᵐ`:(max + 1) := isomorphism.symm
|
||||||
|
infixl ` ⬝lm `:75 := isomorphism.trans
|
||||||
|
infixl ` ⬝lmp `:75 := isomorphism.trans_eq
|
||||||
|
infixl ` ⬝plm `:75 := isomorphism.eq_trans
|
||||||
|
|
||||||
|
definition homomorphism_of_eq [constructor] {M₁ M₂ : LeftModule R} (p : M₁ = M₂ :> LeftModule R)
|
||||||
|
: M₁ →lm M₂ :=
|
||||||
|
isomorphism_of_eq p
|
||||||
|
|
||||||
|
end
|
||||||
|
|
||||||
end
|
end
|
||||||
|
|
||||||
end left_module
|
end left_module
|
||||||
|
|
Loading…
Reference in a new issue