reindex the AHSS and SSS
Now the 2nd page is the correct indexing.
This commit is contained in:
parent
4d3053daff
commit
f9ce395b1c
2 changed files with 124 additions and 60 deletions
|
@ -292,7 +292,8 @@ namespace left_module
|
|||
structure is_bounded {R : Ring} {I : AddAbGroup} (X : exact_couple R I) : Type :=
|
||||
mk' :: (B B' : I → ℕ)
|
||||
(Dub : Π⦃x y⦄ ⦃s : ℕ⦄, (deg (i X))^[s] x = y → B x ≤ s → is_contr (D X y))
|
||||
(Dlb : Π⦃x y z⦄ ⦃s : ℕ⦄ (p : deg (i X) x = y), (deg (i X))^[s] y = z → B' z ≤ s → is_surjective (i X ↘ p))
|
||||
(Dlb : Π⦃x y z⦄ ⦃s : ℕ⦄ (p : deg (i X) x = y), (deg (i X))^[s] y = z → B' z ≤ s →
|
||||
is_surjective (i X ↘ p))
|
||||
(Elb : Π⦃x y⦄ ⦃s : ℕ⦄, (deg (i X))⁻¹ᵉ^[s] x = y → B x ≤ s → is_contr (E X y))
|
||||
|
||||
/- Note: Elb proves Dlb for some bound B', but we want tight control over when B' = 0 -/
|
||||
|
@ -495,22 +496,22 @@ namespace left_module
|
|||
|
||||
parameters (x : I)
|
||||
|
||||
definition r (n : ℕ) : ℕ :=
|
||||
definition rb (n : ℕ) : ℕ :=
|
||||
max (max (B (deg (j X) (deg (k X) x)) + n + 1) (B3 ((deg (i X))^[n] x)))
|
||||
(max (B' (deg (k X) ((deg (i X))^[n] x)))
|
||||
(max (B' (deg (k X) ((deg (i X))^[n+1] x))) (B ((deg (j X))⁻¹ ((deg (i X))^[n] x)))))
|
||||
|
||||
lemma rb0 (n : ℕ) : r n ≥ n + 1 :=
|
||||
lemma rb0 (n : ℕ) : rb n ≥ n + 1 :=
|
||||
ge.trans !le_max_left (ge.trans !le_max_left !le_add_left)
|
||||
lemma rb1 (n : ℕ) : B (deg (j X) (deg (k X) x)) ≤ r n - (n + 1) :=
|
||||
lemma rb1 (n : ℕ) : B (deg (j X) (deg (k X) x)) ≤ rb n - (n + 1) :=
|
||||
nat.le_sub_of_add_le (le.trans !le_max_left !le_max_left)
|
||||
lemma rb2 (n : ℕ) : B3 ((deg (i X))^[n] x) ≤ r n :=
|
||||
lemma rb2 (n : ℕ) : B3 ((deg (i X))^[n] x) ≤ rb n :=
|
||||
le.trans !le_max_right !le_max_left
|
||||
lemma rb3 (n : ℕ) : B' (deg (k X) ((deg (i X))^[n] x)) ≤ r n :=
|
||||
lemma rb3 (n : ℕ) : B' (deg (k X) ((deg (i X))^[n] x)) ≤ rb n :=
|
||||
le.trans !le_max_left !le_max_right
|
||||
lemma rb4 (n : ℕ) : B' (deg (k X) ((deg (i X))^[n+1] x)) ≤ r n :=
|
||||
lemma rb4 (n : ℕ) : B' (deg (k X) ((deg (i X))^[n+1] x)) ≤ rb n :=
|
||||
le.trans (le.trans !le_max_left !le_max_right) !le_max_right
|
||||
lemma rb5 (n : ℕ) : B ((deg (j X))⁻¹ ((deg (i X))^[n] x)) ≤ r n :=
|
||||
lemma rb5 (n : ℕ) : B ((deg (j X))⁻¹ ((deg (i X))^[n] x)) ≤ rb n :=
|
||||
le.trans (le.trans !le_max_right !le_max_right) !le_max_right
|
||||
|
||||
definition Einfdiag : graded_module R ℕ :=
|
||||
|
@ -520,24 +521,24 @@ namespace left_module
|
|||
λn, Dinf (deg (k X) ((deg (i X))^[n] x))
|
||||
|
||||
definition short_exact_mod_page_r (n : ℕ) : short_exact_mod
|
||||
(E (page (r n)) ((deg (i X))^[n] x))
|
||||
(D (page (r n)) (deg (k (page (r n))) ((deg (i X))^[n] x)))
|
||||
(D (page (r n)) (deg (i (page (r n))) (deg (k (page (r n))) ((deg (i X))^[n] x)))) :=
|
||||
(E (page (rb n)) ((deg (i X))^[n] x))
|
||||
(D (page (rb n)) (deg (k (page (rb n))) ((deg (i X))^[n] x)))
|
||||
(D (page (rb n)) (deg (i (page (rb n))) (deg (k (page (rb n))) ((deg (i X))^[n] x)))) :=
|
||||
begin
|
||||
fapply short_exact_mod_of_is_exact,
|
||||
{ exact j (page (r n)) ← ((deg (i X))^[n] x) },
|
||||
{ exact k (page (r n)) ((deg (i X))^[n] x) },
|
||||
{ exact i (page (r n)) (deg (k (page (r n))) ((deg (i X))^[n] x)) },
|
||||
{ exact j (page (r n)) _ },
|
||||
{ exact j (page (rb n)) ← ((deg (i X))^[n] x) },
|
||||
{ exact k (page (rb n)) ((deg (i X))^[n] x) },
|
||||
{ exact i (page (rb n)) (deg (k (page (rb n))) ((deg (i X))^[n] x)) },
|
||||
{ exact j (page (rb n)) _ },
|
||||
{ apply is_contr_D, refine Dub !deg_j_inv⁻¹ (rb5 n) },
|
||||
{ apply is_contr_E, refine Elb _ (rb1 n),
|
||||
refine !deg_iterate_ij_commute ⬝ _,
|
||||
refine ap (deg (j X)) _ ⬝ !deg_j⁻¹,
|
||||
refine iterate_sub _ !rb0 _ ⬝ _, apply ap (_^[r n]),
|
||||
refine iterate_sub _ !rb0 _ ⬝ _, apply ap (_^[rb n]),
|
||||
exact ap (deg (i X)) (!deg_iterate_ik_commute ⬝ !deg_k⁻¹) ⬝ !deg_i⁻¹ },
|
||||
{ apply jk (page (r n)) },
|
||||
{ apply ki (page (r n)) },
|
||||
{ apply ij (page (r n)) }
|
||||
{ apply jk (page (rb n)) },
|
||||
{ apply ki (page (rb n)) },
|
||||
{ apply ij (page (rb n)) }
|
||||
end
|
||||
|
||||
definition short_exact_mod_infpage (n : ℕ) :
|
||||
|
@ -573,6 +574,20 @@ namespace left_module
|
|||
(λs, Dinfdiag_stable)
|
||||
|
||||
end
|
||||
|
||||
definition deg_d_reindex {R : Ring} {I J : AddAbGroup}
|
||||
(e : AddGroup_of_AddAbGroup J ≃g AddGroup_of_AddAbGroup I) (X : exact_couple R I)
|
||||
(r : ℕ) : deg (d (page (exact_couple_reindex e X) r)) ~
|
||||
e⁻¹ᵍ ∘ deg (d (page X r)) ∘ e :=
|
||||
begin
|
||||
intro x, refine !deg_d ⬝ _ ⬝ ap e⁻¹ᵍ !deg_d⁻¹,
|
||||
apply ap (e⁻¹ᵍ ∘ deg (j X)),
|
||||
note z := @iterate_hsquare _ _ (deg (i (exact_couple_reindex e X)))⁻¹ᵉ (deg (i X))⁻¹ᵉ e
|
||||
(λx, proof to_right_inv (group.equiv_of_isomorphism e) _ qed)⁻¹ʰᵗʸʰ r,
|
||||
refine z _ ⬝ _, apply ap ((deg (i X))⁻¹ᵉ^[r]),
|
||||
exact to_right_inv (group.equiv_of_isomorphism e) _
|
||||
end
|
||||
|
||||
end convergence_theorem
|
||||
|
||||
open int group prod convergence_theorem prod.ops
|
||||
|
@ -592,12 +607,12 @@ namespace left_module
|
|||
(Dinf : agℤ → LeftModule.{u w} R) : Type.{max u (v+1) (w+1)} :=
|
||||
(X : exact_couple.{u 0 w v} R Z2)
|
||||
(HH : is_bounded X)
|
||||
(s₀ : agℤ → agℤ)
|
||||
(HB : Π(n : agℤ), is_bounded.B' HH (deg (k X) (n, s₀ n)) = 0)
|
||||
(s₁ : agℤ → agℤ) (s₂ : agℤ → agℤ)
|
||||
(HB : Π(n : agℤ), is_bounded.B' HH (deg (k X) (s₁ n, s₂ n)) = 0)
|
||||
(e : Π(x : Z2), exact_couple.E X x ≃lm E' x.1 x.2)
|
||||
(f : Π(n : agℤ), exact_couple.D X (deg (k X) (n, s₀ n)) ≃lm Dinf n)
|
||||
(f : Π(n : agℤ), exact_couple.D X (deg (k X) (s₁ n, s₂ n)) ≃lm Dinf n)
|
||||
(deg_d1 : ℕ → agℤ) (deg_d2 : ℕ → agℤ)
|
||||
(deg_d_eq : Π(r : ℕ) (n s : agℤ), deg (d (page X r)) (n, s) = (n, s) + (deg_d1 r, deg_d2 r))
|
||||
(deg_d_eq0 : Π(r : ℕ), deg (d (page X r)) 0 = (deg_d1 r, deg_d2 r))
|
||||
|
||||
structure converging_spectral_sequence.{u v w} {R : Ring} (E' : agℤ → agℤ → LeftModule.{u v} R)
|
||||
(Dinf : agℤ → LeftModule.{u w} R) : Type.{max u (v+1) (w+1)} :=
|
||||
|
@ -622,9 +637,14 @@ namespace left_module
|
|||
local abbreviation X := X c
|
||||
local abbreviation i := i X
|
||||
local abbreviation HH := HH c
|
||||
local abbreviation s₀ := s₀ c
|
||||
local abbreviation Dinfdiag (n : agℤ) (k : ℕ) := Dinfdiag HH (n, s₀ n) k
|
||||
local abbreviation Einfdiag (n : agℤ) (k : ℕ) := Einfdiag HH (n, s₀ n) k
|
||||
local abbreviation s₁ := s₁ c
|
||||
local abbreviation s₂ := s₂ c
|
||||
local abbreviation Dinfdiag (n : agℤ) (k : ℕ) := Dinfdiag HH (s₁ n, s₂ n) k
|
||||
local abbreviation Einfdiag (n : agℤ) (k : ℕ) := Einfdiag HH (s₁ n, s₂ n) k
|
||||
|
||||
definition deg_d_eq (r : ℕ) (n s : agℤ) :
|
||||
(deg (d (page X r))) (n, s) = (n + deg_d1 c r, s + deg_d2 c r) :=
|
||||
!deg_eq ⬝ ap (λx, _ + x) (deg_d_eq0 c r)
|
||||
|
||||
definition deg_d_inv_eq (r : ℕ) (n s : agℤ) :
|
||||
(deg (d (page X r)))⁻¹ᵉ (n, s) = (n - deg_d1 c r, s - deg_d2 c r) :=
|
||||
|
@ -632,16 +652,38 @@ namespace left_module
|
|||
|
||||
definition converges_to_isomorphism {E'' : agℤ → agℤ → LeftModule R} {Dinf' : graded_module R agℤ}
|
||||
(e' : Πn s, E' n s ≃lm E'' n s) (f' : Πn, Dinf n ≃lm Dinf' n) : E'' ⟹ Dinf' :=
|
||||
converges_to.mk X HH s₀ (HB c)
|
||||
converges_to.mk X HH s₁ s₂ (HB c)
|
||||
begin intro x, induction x with n s, exact e c (n, s) ⬝lm e' n s end
|
||||
(λn, f c n ⬝lm f' n)
|
||||
(deg_d1 c) (deg_d2 c) (λr n s, deg_d_eq c r n s)
|
||||
(deg_d1 c) (deg_d2 c) (λr, deg_d_eq0 c r)
|
||||
|
||||
|
||||
include c
|
||||
definition converges_to_reindex (i : agℤ ×ag agℤ ≃g agℤ ×ag agℤ) :
|
||||
(λp q, E' (i (p, q)).1 (i (p, q)).2) ⟹ (λn, Dinf n) :=
|
||||
begin
|
||||
fapply converges_to.mk (exact_couple_reindex i X) (is_bounded_reindex i HH),
|
||||
{ exact λn, (i⁻¹ᵍ (s₁ n, s₂ n)).1 },
|
||||
{ exact λn, (i⁻¹ᵍ (s₁ n, s₂ n)).2 },
|
||||
{ intro n, refine ap (B' HH) _ ⬝ HB c n,
|
||||
refine to_right_inv (group.equiv_of_isomorphism i) _ ⬝ _,
|
||||
apply ap (deg (k X)), exact ap i !prod.eta ⬝ to_right_inv (group.equiv_of_isomorphism i) _ },
|
||||
{ intro x, induction x with p q, exact e c (i (p, q)) },
|
||||
{ intro n, refine _ ⬝lm f c n, refine isomorphism_of_eq (ap (D X) _),
|
||||
refine to_right_inv (group.equiv_of_isomorphism i) _ ⬝ _,
|
||||
apply ap (deg (k X)), exact ap i !prod.eta ⬝ to_right_inv (group.equiv_of_isomorphism i) _ },
|
||||
{ exact λn, (i⁻¹ᵍ (deg_d1 c n, deg_d2 c n)).1 },
|
||||
{ exact λn, (i⁻¹ᵍ (deg_d1 c n, deg_d2 c n)).2 },
|
||||
{ intro r, esimp, refine !deg_d_reindex ⬝ ap i⁻¹ᵍ (ap (deg (d _)) (group.to_respect_zero i) ⬝
|
||||
deg_d_eq0 c r) ⬝ !prod.eta⁻¹ }
|
||||
end
|
||||
omit c
|
||||
|
||||
/- definition converges_to_reindex {E'' : agℤ → agℤ → LeftModule R} {Dinf' : graded_module R agℤ}
|
||||
(i : agℤ ×g agℤ ≃ agℤ × agℤ) (e' : Πp q, E' p q ≃lm E'' (i (p, q)).1 (i (p, q)).2)
|
||||
(i2 : agℤ ≃ agℤ) (f' : Πn, Dinf n ≃lm Dinf' (i2 n)) :
|
||||
(λp q, E'' p q) ⟹ λn, Dinf' n :=
|
||||
converges_to.mk (exact_couple_reindex i X) (is_bounded_reindex i HH) s₀
|
||||
converges_to.mk (exact_couple_reindex i X) (is_bounded_reindex i HH) s₁ s₂
|
||||
sorry --(λn, ap (B' HH) (to_right_inv i _ ⬝ begin end) ⬝ HB c n)
|
||||
sorry --begin intro x, induction x with p q, exact e c (p, q) ⬝lm e' p q end
|
||||
sorry-/
|
||||
|
@ -651,17 +693,17 @@ namespace left_module
|
|||
(f' : Πn, Dinf n ≃lm Dinf' (-n)) :
|
||||
(λp q, E'' p q) ⟹ λn, Dinf' n :=
|
||||
converges_to.mk (exact_couple_reindex (equiv_neg ×≃ equiv_neg) X) (is_bounded_reindex _ HH)
|
||||
(λn, -s₀ (-n))
|
||||
(λn, -s₂ (-n))
|
||||
(λn, ap (B' HH) (begin esimp, end) ⬝ HB c n)
|
||||
sorry --begin intro x, induction x with p q, exact e c (p, q) ⬝lm e' p q end
|
||||
sorry-/
|
||||
|
||||
definition is_built_from_of_converges_to (n : ℤ) : is_built_from (Dinf n) (Einfdiag n) :=
|
||||
is_built_from_isomorphism_left (f c n) (is_built_from_infpage HH (n, s₀ n) (HB c n))
|
||||
is_built_from_isomorphism_left (f c n) (is_built_from_infpage HH (s₁ n, s₂ n) (HB c n))
|
||||
|
||||
/- TODO: reprove this using is_built_of -/
|
||||
theorem is_contr_converges_to_precise (n : agℤ)
|
||||
(H : Π(n : agℤ) (l : ℕ), is_contr (E' ((deg i)^[l] (n, s₀ n)).1 ((deg i)^[l] (n, s₀ n)).2)) :
|
||||
(H : Π(n : agℤ) (l : ℕ), is_contr (E' ((deg i)^[l] (s₁ n, s₂ n)).1 ((deg i)^[l] (s₁ n, s₂ n)).2)) :
|
||||
is_contr (Dinf n) :=
|
||||
begin
|
||||
assert H2 : Π(l : ℕ), is_contr (Einfdiag n l),
|
||||
|
@ -669,13 +711,13 @@ namespace left_module
|
|||
refine is_trunc_equiv_closed_rev -2 (equiv_of_isomorphism (e c _)) (H n l) },
|
||||
assert H3 : is_contr (Dinfdiag n 0),
|
||||
{ fapply nat.rec_down (λk, is_contr (Dinfdiag n k)),
|
||||
{ exact is_bounded.B HH (deg (k X) (n, s₀ n)) },
|
||||
{ exact is_bounded.B HH (deg (k X) (s₁ n, s₂ n)) },
|
||||
{ apply Dinfdiag_stable, reflexivity },
|
||||
{ intro l H,
|
||||
exact is_contr_middle_of_short_exact_mod (short_exact_mod_infpage HH (n, s₀ n) l)
|
||||
exact is_contr_middle_of_short_exact_mod (short_exact_mod_infpage HH (s₁ n, s₂ n) l)
|
||||
(H2 l) H }},
|
||||
refine is_trunc_equiv_closed _ _ H3,
|
||||
exact equiv_of_isomorphism (Dinfdiag0 HH (n, s₀ n) (HB c n) ⬝lm f c n)
|
||||
exact equiv_of_isomorphism (Dinfdiag0 HH (s₁ n, s₂ n) (HB c n) ⬝lm f c n)
|
||||
end
|
||||
|
||||
theorem is_contr_converges_to (n : agℤ) (H : Π(n s : agℤ), is_contr (E' n s)) : is_contr (Dinf n) :=
|
||||
|
@ -686,7 +728,7 @@ namespace left_module
|
|||
(H2 : Π⦃r⦄, r₁ ≤ r → r < r₂ → is_contr (E X (n + deg_d1 c r, s + deg_d2 c r))) :
|
||||
E (page X r₂) (n, s) ≃lm E (page X r₁) (n, s) :=
|
||||
E_isomorphism' X H (λr Hr₁ Hr₂, transport (is_contr ∘ E X) (deg_d_inv_eq r n s)⁻¹ᵖ (H1 Hr₁ Hr₂))
|
||||
(λr Hr₁ Hr₂, transport (is_contr ∘ E X) (deg_d_eq c r n s)⁻¹ᵖ (H2 Hr₁ Hr₂))
|
||||
(λr Hr₁ Hr₂, transport (is_contr ∘ E X) (deg_d_eq r n s)⁻¹ᵖ (H2 Hr₁ Hr₂))
|
||||
|
||||
definition E_isomorphism0 {r : ℕ} {n s : agℤ}
|
||||
(H1 : Πr, is_contr (E X (n - deg_d1 c r, s - deg_d2 c r)))
|
||||
|
@ -699,7 +741,7 @@ namespace left_module
|
|||
(H2 : Π⦃r⦄, r₁ ≤ r → is_contr (E X (n + deg_d1 c r, s + deg_d2 c r))) :
|
||||
Einf HH (n, s) ≃lm E (page X r₁) (n, s) :=
|
||||
Einf_isomorphism' HH r₁ (λr Hr₁, transport (is_contr ∘ E X) (deg_d_inv_eq r n s)⁻¹ᵖ (H1 Hr₁))
|
||||
(λr Hr₁, transport (is_contr ∘ E X) (deg_d_eq c r n s)⁻¹ᵖ (H2 Hr₁))
|
||||
(λr Hr₁, transport (is_contr ∘ E X) (deg_d_eq r n s)⁻¹ᵖ (H2 Hr₁))
|
||||
|
||||
definition Einf_isomorphism0 {n s : agℤ}
|
||||
(H1 : Π⦃r⦄, is_contr (E X (n - deg_d1 c r, s - deg_d2 c r)))
|
||||
|
@ -921,15 +963,16 @@ namespace spectrum
|
|||
fapply converges_to.mk,
|
||||
{ exact exact_couple_sequence },
|
||||
{ exact is_bounded_sequence },
|
||||
{ exact id },
|
||||
{ exact ub },
|
||||
{ intro n, change max0 (ub n - ub n) = 0, exact ap max0 (sub_self (ub n)) },
|
||||
{ intro ns, reflexivity },
|
||||
{ intro n, reflexivity },
|
||||
{ intro r, exact - (1 : ℤ) },
|
||||
{ intro r, exact r + (1 : ℤ) },
|
||||
{ intro r n s, refine !convergence_theorem.deg_d ⬝ _,
|
||||
{ intro r, refine !convergence_theorem.deg_d ⬝ _,
|
||||
refine ap (deg j_sequence) !iterate_deg_i_inv ⬝ _,
|
||||
exact prod_eq idp (!add.assoc ⬝ ap (λx, s + (r + x)) !neg_neg) },
|
||||
exact prod_eq idp !zero_add }
|
||||
end
|
||||
|
||||
end
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
import ..algebra.spectral_sequence ..spectrum.trunc .basic
|
||||
|
||||
open eq spectrum trunc is_trunc pointed int EM algebra left_module fiber lift equiv is_equiv
|
||||
cohomology group sigma unit is_conn
|
||||
cohomology group sigma unit is_conn prod
|
||||
set_option pp.binder_types true
|
||||
|
||||
/- Eilenberg MacLane spaces are the fibers of the Postnikov system of a type -/
|
||||
|
@ -171,14 +171,14 @@ section atiyah_hirzebruch
|
|||
definition is_bounded_atiyah_hirzebruch : is_bounded atiyah_hirzebruch_exact_couple :=
|
||||
is_bounded_sequence _ (λn, s₀) (λn, n - 1) atiyah_hirzebruch_lb atiyah_hirzebruch_ub
|
||||
|
||||
definition atiyah_hirzebruch_convergence' :
|
||||
definition atiyah_hirzebruch_convergence1 :
|
||||
(λn s, πₛ[n] (sfiber (spi_compose_left (λx, postnikov_smap (Y x) s)))) ⟹ᵍ
|
||||
(λn, πₛ[n] (spi X (λx, strunc s₀ (Y x)))) :=
|
||||
converges_to_sequence _ (λn, s₀) (λn, n - 1) atiyah_hirzebruch_lb atiyah_hirzebruch_ub
|
||||
|
||||
definition atiyah_hirzebruch_convergence :
|
||||
definition atiyah_hirzebruch_convergence2 :
|
||||
(λn s, opH^-(n-s)[(x : X), πₛ[s] (Y x)]) ⟹ᵍ (λn, pH^-n[(x : X), Y x]) :=
|
||||
converges_to_g_isomorphism atiyah_hirzebruch_convergence'
|
||||
converges_to_g_isomorphism atiyah_hirzebruch_convergence1
|
||||
begin
|
||||
intro n s,
|
||||
refine _ ⬝g (parametrized_cohomology_isomorphism_shomotopy_group_spi _ idp)⁻¹ᵍ,
|
||||
|
@ -194,11 +194,32 @@ section atiyah_hirzebruch
|
|||
exact ppi_pequiv_right (λx, ptrunc_pequiv (maxm2 (s₀ + k)) (Y x k)),
|
||||
end
|
||||
|
||||
-- set_option pp.metavar_args true
|
||||
-- definition atiyah_reindexed : (λp q, opH^p[(x : X), πₛ[q] (Y x)]) ⟹ᵍ (λn, pH^n[(x : X), Y x])
|
||||
-- :=
|
||||
-- converges_to_reindex atiyah_hirzebruch_convergence (λp q, -(p - q)) (λp q, q) (λp q, by reflexivity)
|
||||
-- (λn, -n) (λn, by reflexivity)
|
||||
open prod.ops
|
||||
definition atiyah_hirzebruch_base_change [constructor] : agℤ ×ag agℤ ≃g agℤ ×ag agℤ :=
|
||||
begin
|
||||
fapply group.isomorphism.mk,
|
||||
{ fapply group.homomorphism.mk, exact (λpq, (-(pq.1 + pq.2), -pq.2)),
|
||||
intro pq pq',
|
||||
induction pq with p q, induction pq' with p' q', esimp,
|
||||
exact prod_eq (ap neg !add.comm4 ⬝ !neg_add) !neg_add },
|
||||
{ fapply adjointify,
|
||||
{ exact (λns, (ns.2 - ns.1, -ns.2)) },
|
||||
{ intro ns, esimp,
|
||||
exact prod_eq (ap neg (!add.comm ⬝ !neg_add_cancel_left) ⬝ !neg_neg) !neg_neg },
|
||||
{ intro pq, esimp,
|
||||
exact prod_eq (ap (λx, _ + x) !neg_neg ⬝ !add.comm ⬝ !add_neg_cancel_right) !neg_neg }}
|
||||
end
|
||||
|
||||
definition atiyah_hirzebruch_convergence :
|
||||
(λp q, opH^p[(x : X), πₛ[-q] (Y x)]) ⟹ᵍ (λn, pH^-n[(x : X), Y x]) :=
|
||||
begin
|
||||
note z := converges_to_reindex atiyah_hirzebruch_convergence2 atiyah_hirzebruch_base_change,
|
||||
refine converges_to_g_isomorphism z _ (λn, by reflexivity),
|
||||
intro p q,
|
||||
apply parametrized_cohomology_change_int,
|
||||
esimp,
|
||||
refine !neg_neg_sub_neg ⬝ !add_neg_cancel_right
|
||||
end
|
||||
|
||||
end atiyah_hirzebruch
|
||||
|
||||
|
@ -206,11 +227,11 @@ section unreduced_atiyah_hirzebruch
|
|||
|
||||
definition unreduced_atiyah_hirzebruch_convergence {X : Type} (Y : X → spectrum) (s₀ : ℤ)
|
||||
(H : Πx, is_strunc s₀ (Y x)) :
|
||||
(λn s, uopH^-(n-s)[(x : X), πₛ[s] (Y x)]) ⟹ᵍ (λn, upH^-n[(x : X), Y x]) :=
|
||||
(λp q, uopH^p[(x : X), πₛ[-q] (Y x)]) ⟹ᵍ (λn, upH^-n[(x : X), Y x]) :=
|
||||
converges_to_g_isomorphism
|
||||
(@atiyah_hirzebruch_convergence X₊ (add_point_spectrum Y) s₀ (is_strunc_add_point_spectrum H))
|
||||
begin
|
||||
intro n s, refine _ ⬝g !uopH_isomorphism_opH⁻¹ᵍ,
|
||||
intro p q, refine _ ⬝g !uopH_isomorphism_opH⁻¹ᵍ,
|
||||
apply ordinary_parametrized_cohomology_isomorphism_right,
|
||||
intro x,
|
||||
apply shomotopy_group_add_point_spectrum
|
||||
|
@ -227,17 +248,17 @@ section serre
|
|||
|
||||
include H
|
||||
definition serre_convergence :
|
||||
(λn s, uopH^-(n-s)[(b : B), uH^-s[F b, Y]]) ⟹ᵍ (λn, uH^-n[Σ(b : B), F b, Y]) :=
|
||||
(λp q, uopH^p[(b : B), uH^q[F b, Y]]) ⟹ᵍ (λn, uH^-n[Σ(b : B), F b, Y]) :=
|
||||
proof
|
||||
converges_to_g_isomorphism
|
||||
(unreduced_atiyah_hirzebruch_convergence
|
||||
(λx, sp_ucotensor (F x) Y) s₀
|
||||
(λx, is_strunc_sp_ucotensor s₀ (F x) H))
|
||||
begin
|
||||
intro n s,
|
||||
refine unreduced_ordinary_parametrized_cohomology_isomorphism_right _ (-(n-s)),
|
||||
intro p q,
|
||||
refine unreduced_ordinary_parametrized_cohomology_isomorphism_right _ p,
|
||||
intro x,
|
||||
exact (unreduced_cohomology_isomorphism_shomotopy_group_sp_ucotensor _ _ idp)⁻¹ᵍ
|
||||
exact (unreduced_cohomology_isomorphism_shomotopy_group_sp_ucotensor _ _ !neg_neg)⁻¹ᵍ
|
||||
end
|
||||
begin
|
||||
intro n,
|
||||
|
@ -249,29 +270,29 @@ section serre
|
|||
qed
|
||||
|
||||
definition serre_convergence_map :
|
||||
(λn s, uopH^-(n-s)[(b : B), uH^-s[fiber f b, Y]]) ⟹ᵍ (λn, uH^-n[X, Y]) :=
|
||||
(λp q, uopH^p[(b : B), uH^q[fiber f b, Y]]) ⟹ᵍ (λn, uH^-n[X, Y]) :=
|
||||
proof
|
||||
converges_to_g_isomorphism
|
||||
(serre_convergence (fiber f) Y s₀ H)
|
||||
begin intro n s, reflexivity end
|
||||
begin intro p q, reflexivity end
|
||||
begin intro n, apply unreduced_cohomology_isomorphism, exact !sigma_fiber_equiv⁻¹ᵉ end
|
||||
qed
|
||||
|
||||
definition serre_convergence_of_is_conn (H2 : is_conn 1 B) :
|
||||
(λn s, uoH^-(n-s)[B, uH^-s[F b₀, Y]]) ⟹ᵍ (λn, uH^-n[Σ(b : B), F b, Y]) :=
|
||||
(λp q, uoH^p[B, uH^q[F b₀, Y]]) ⟹ᵍ (λn, uH^-n[Σ(b : B), F b, Y]) :=
|
||||
proof
|
||||
converges_to_g_isomorphism
|
||||
(serre_convergence F Y s₀ H)
|
||||
begin intro n s, exact @uopH_isomorphism_uoH_of_is_conn (pointed.MK B b₀) _ _ H2 end
|
||||
begin intro p q, exact @uopH_isomorphism_uoH_of_is_conn (pointed.MK B b₀) _ _ H2 end
|
||||
begin intro n, reflexivity end
|
||||
qed
|
||||
|
||||
definition serre_convergence_map_of_is_conn (H2 : is_conn 1 B) :
|
||||
(λn s, uoH^-(n-s)[B, uH^-s[fiber f b₀, Y]]) ⟹ᵍ (λn, uH^-n[X, Y]) :=
|
||||
(λp q, uoH^p[B, uH^q[fiber f b₀, Y]]) ⟹ᵍ (λn, uH^-n[X, Y]) :=
|
||||
proof
|
||||
converges_to_g_isomorphism
|
||||
(serre_convergence_of_is_conn b₀ (fiber f) Y s₀ H H2)
|
||||
begin intro n s, reflexivity end
|
||||
begin intro p q, reflexivity end
|
||||
begin intro n, apply unreduced_cohomology_isomorphism, exact !sigma_fiber_equiv⁻¹ᵉ end
|
||||
qed
|
||||
|
||||
|
|
Loading…
Reference in a new issue