is_embedding_ab_subgroup_of_subgroup_incl
This commit is contained in:
parent
07d775563b
commit
fd5d774e55
1 changed files with 13 additions and 0 deletions
|
@ -427,9 +427,22 @@ namespace group
|
||||||
:=
|
:=
|
||||||
subgroup_functor (gid G) H
|
subgroup_functor (gid G) H
|
||||||
|
|
||||||
|
definition is_embedding_subgroup_of_subgroup_incl {R S : subgroup_rel G} (H : Π (g : G), R g -> S g) : is_embedding (subgroup_of_subgroup_incl H) :=
|
||||||
|
begin
|
||||||
|
fapply is_embedding_of_is_injective,
|
||||||
|
intro x y p,
|
||||||
|
induction x with x r, induction y with y s,
|
||||||
|
fapply subtype_eq, esimp,
|
||||||
|
unfold subgroup_of_subgroup_incl at p, exact ap pr1 p,
|
||||||
|
end
|
||||||
|
|
||||||
definition ab_subgroup_of_subgroup_incl {A : AbGroup} {R S : subgroup_rel A} (H : Π (a : A), R a -> S a) : ab_subgroup R →g ab_subgroup S
|
definition ab_subgroup_of_subgroup_incl {A : AbGroup} {R S : subgroup_rel A} (H : Π (a : A), R a -> S a) : ab_subgroup R →g ab_subgroup S
|
||||||
:=
|
:=
|
||||||
ab_subgroup_functor (gid A) H
|
ab_subgroup_functor (gid A) H
|
||||||
|
|
||||||
|
definition is_embedding_ab_subgroup_of_subgroup_incl {A : AbGroup} {R S : subgroup_rel A} (H : Π (a : A), R a -> S a) : is_embedding (ab_subgroup_of_subgroup_incl H) :=
|
||||||
|
begin
|
||||||
|
fapply is_embedding_subgroup_of_subgroup_incl,
|
||||||
|
end
|
||||||
|
|
||||||
end group
|
end group
|
||||||
|
|
Loading…
Reference in a new issue