diff --git a/colimit/seq_colim.hlean b/colimit/seq_colim.hlean index 1ddf46e..60689fa 100644 --- a/colimit/seq_colim.hlean +++ b/colimit/seq_colim.hlean @@ -723,7 +723,7 @@ incl_kshift_diag f x definition seq_colim_eq_equiv0' (a₀ a₁ : A 0) : ι f a₀ = ι f a₁ ≃ seq_colim (id_seq_diagram f 0 a₀ a₁) := begin - refine total_space_method2 (ι f a₀) (seq_colim_over (id0_seq_diagram_over f a₀)) + refine total_space_method (ι f a₀) (seq_colim_over (id0_seq_diagram_over f a₀)) _ _ (ι f a₁) ⬝e _, { apply @(is_trunc_equiv_closed_rev _ (sigma_seq_colim_over_equiv _ _)), apply is_contr_seq_colim }, diff --git a/colimit/sequence.hlean b/colimit/sequence.hlean index f126496..a8606a0 100644 --- a/colimit/sequence.hlean +++ b/colimit/sequence.hlean @@ -92,7 +92,7 @@ namespace seq_colim /- lreplace le_of_succ_le with this -/ definition lrep_f {n m : ℕ} (H : succ n ≤ m) (a : A n) : - lrep f H (f a) = lrep f (le_step_left H) a := + lrep f H (f a) = lrep f (le_of_succ_le H) a := begin induction H with m H p, { reflexivity }, diff --git a/homology/basic.hlean b/homology/basic.hlean index 0ead27e..851aa8e 100644 --- a/homology/basic.hlean +++ b/homology/basic.hlean @@ -54,7 +54,7 @@ namespace homology theorem Hh_homotopy (n : ℤ) {A B : Type*} (f g : A →* B) (h : f ~ g) : Hh theory n f ~ Hh theory n g := λ x, calc Hh theory n f x - = Hh theory n (pmap.mk f (respect_pt f)) x : by exact ap (λ f, Hh theory n f x) (pmap.eta f)⁻¹ + = Hh theory n (pmap.mk f (respect_pt f)) x : by exact ap (λ f, Hh theory n f x) (pmap_eta_eq f)⁻¹ ... = Hh theory n (pmap.mk f (h pt ⬝ respect_pt g)) x : by exact Hh_homotopy' n f (respect_pt f) (h pt ⬝ respect_pt g) x ... = Hh theory n g x : begin diff --git a/homotopy/pushout.hlean b/homotopy/pushout.hlean index c8f1a05..2d4759f 100644 --- a/homotopy/pushout.hlean +++ b/homotopy/pushout.hlean @@ -111,7 +111,7 @@ namespace pushout refine ap (λx, apd10 x _) (ap_compose (λx, x ∘ f) pr1 _ ⬝ ap02 _ !prod_eq_pr1) ⬝ph _ ⬝hp ap (λx, apd10 x _) (ap_compose (λx, x ∘ g) pr2 _ ⬝ ap02 _ !prod_eq_pr2)⁻¹, refine apd10 !apd10_ap_precompose_dependent a ⬝ph _ ⬝hp apd10 !apd10_ap_precompose_dependent⁻¹ a, - refine apd10 !apd10_eq_of_homotopy (f a) ⬝ph _ ⬝hp apd10 !apd10_eq_of_homotopy⁻¹ (g a), + refine !apd10_eq_of_homotopy ⬝ph _ ⬝hp !apd10_eq_of_homotopy⁻¹, refine ap_compose (pushout.elim h k p) _ _ ⬝pv _, refine aps (pushout.elim h k p) _ ⬝vp (!elim_glue ⬝ !ap_id⁻¹), esimp, exact sorry @@ -981,7 +981,7 @@ namespace pushout assert H : Π w, P w ≃ pushout.elim_type (P ∘ inl) (P ∘ inr) Pglue w, { intro w, induction w with x x x, { exact erfl }, { exact erfl }, - { apply equiv_pathover, intro pfx pgx q, + { apply equiv_pathover2, intro pfx pgx q, apply pathover_of_tr_eq, apply eq.trans (ap10 (elim_type_glue.{u₁ u₂ u₃ u₄} (P ∘ inl) (P ∘ inr) Pglue x) pfx), -- why do we need explicit universes here? diff --git a/homotopy/realprojective.hlean b/homotopy/realprojective.hlean index e2b8377..d8f1688 100644 --- a/homotopy/realprojective.hlean +++ b/homotopy/realprojective.hlean @@ -151,7 +151,7 @@ begin end definition corollary_II_6 : Π A : BoolType, (pt = A) ≃ A := -@total_space_method BoolType pt BoolType.carrier theorem_II_2 idp +@total_space_method BoolType pt BoolType.carrier theorem_II_2 pt definition is_conn_BoolType [instance] : is_conn 0 BoolType := begin diff --git a/homotopy/wedge.hlean b/homotopy/wedge.hlean index 939a415..9933f3c 100644 --- a/homotopy/wedge.hlean +++ b/homotopy/wedge.hlean @@ -258,9 +258,9 @@ pequiv.MK (nar_of_noo f g h) (noo_of_nar f g h) -- apply eq_pathover_id_right, refine ap_compose nar_of_noo _ _ ⬝ ap02 _ !elim_glue ⬝ph _ -- apply eq_pathover_id_right, refine ap_compose noo_of_nar _ _ ⬝ ap02 _ !elim_glue ⬝ph _ - definition loop_pequiv_of_cross_section {A B : Type*} (f : A →* B) (g : B →* A) - (h : f ∘* g ~* pid B) : Ω A ≃* Ω (pfiber f) ×* Ω B := - + -- definition loop_pequiv_of_cross_section {A B : Type*} (f : A →* B) (g : B →* A) + -- (h : f ∘* g ~* pid B) : Ω A ≃* Ω (pfiber f) ×* Ω B := + -- sorry diff --git a/move_to_lib.hlean b/move_to_lib.hlean index 6c65c6c..b06fc71 100644 --- a/move_to_lib.hlean +++ b/move_to_lib.hlean @@ -23,6 +23,7 @@ is_trunc_loop_of_is_trunc > is_trunc_loopn_of_is_trunc first two arguments reordered in is_trunc_loopn_nat +reorder pathover arguments of constructions with squareovers (mostly implicit) -/ namespace eq diff --git a/pointed.hlean b/pointed.hlean index a0b9d2b..6677ea8 100644 --- a/pointed.hlean +++ b/pointed.hlean @@ -213,13 +213,6 @@ namespace pointed /- Homotopy between a function and its eta expansion -/ - definition pmap_eta [constructor] {X Y : Type*} (f : X →* Y) : f ~* pmap.mk f (respect_pt f) := - begin - fapply phomotopy.mk, - reflexivity, - esimp, exact !idp_con - end - definition papply_point [constructor] (A B : Type*) : papply B pt ~* pconst (ppmap A B) B := phomotopy.mk (λf, respect_pt f) idp diff --git a/pointed_cubes.hlean b/pointed_cubes.hlean index 79392cc..6735771 100644 --- a/pointed_cubes.hlean +++ b/pointed_cubes.hlean @@ -91,13 +91,22 @@ begin exact (pconst_pcompose fleft)⁻¹*, end -definition phsquare_of_phomotopy {A B : Type*} {f g h i : A →* B} {phtpy_top : f ~* g} {phtpy_bot : h ~* i} {phtpy_left : f ~* h} {phtpy_right : g ~* i} (H : phtpy_top ⬝* phtpy_right ~* phtpy_left ⬝* phtpy_bot) : phsquare phtpy_top phtpy_bot phtpy_left phtpy_right := - eq_of_phomotopy H +definition phsquare_of_phomotopy {A B : Type*} {f g h i : A →* B} {phtpy_top : f ~* g} + {phtpy_bot : h ~* i} {phtpy_left : f ~* h} {phtpy_right : g ~* i} + (H : phtpy_top ⬝* phtpy_right ~* phtpy_left ⬝* phtpy_bot) : + phsquare phtpy_top phtpy_bot phtpy_left phtpy_right := +eq_of_phomotopy H -definition ptube_v {A B C D : Type*} {ftop ftop' : A →* B} (phtpy_top : ftop ~* ftop') {fbot fbot' : C →* D} (phtpy_bot : fbot ~* fbot') {fleft : A →* C} {fright : B →* D} (psq_back : psquare ftop fbot fleft fright) (psq_front : psquare ftop' fbot' fleft fright) : Type := +definition ptube_v {A B C D : Type*} {ftop ftop' : A →* B} (phtpy_top : ftop ~* ftop') + {fbot fbot' : C →* D} (phtpy_bot : fbot ~* fbot') {fleft : A →* C} {fright : B →* D} + (psq_back : psquare ftop fbot fleft fright) (psq_front : psquare ftop' fbot' fleft fright) : + Type := phsquare (pwhisker_left fright phtpy_top) (pwhisker_right fleft phtpy_bot) psq_back psq_front -definition ptube_h {A B C D : Type*} {ftop : A →* B} {fbot : C →* D} {fleft fleft' : A →* C} (phtpy_left : fleft ~* fleft') {fright fright' : B →* D} (phtpy_right : fright ~* fright') (psq_back : psquare ftop fbot fleft fright) (psq_front : psquare ftop fbot fleft' fright') : Type := +definition ptube_h {A B C D : Type*} {ftop : A →* B} {fbot : C →* D} {fleft fleft' : A →* C} + (phtpy_left : fleft ~* fleft') {fright fright' : B →* D} (phtpy_right : fright ~* fright') + (psq_back : psquare ftop fbot fleft fright) (psq_front : psquare ftop fbot fleft' fright') : + Type := phsquare (pwhisker_right ftop phtpy_right) (pwhisker_left fbot phtpy_left) psq_back psq_front --print pinv_right_phomotopy_of_phomotopy diff --git a/pointed_pi.hlean b/pointed_pi.hlean index 446f324..eb3cfdd 100644 --- a/pointed_pi.hlean +++ b/pointed_pi.hlean @@ -47,7 +47,7 @@ namespace pointed apply eq_of_fn_eq_fn eq_equiv_homotopy, apply eq_of_homotopy, intro b, refine !apd10_con ⬝ _, - refine whisker_right _ !pi.apd10_eq_of_homotopy ⬝ q b + refine whisker_right _ !apd10_eq_of_homotopy ⬝ q b end definition pupi_functor [constructor] {A A' : Type} {B : A → Type*} {B' : A' → Type*} @@ -65,9 +65,9 @@ namespace pointed begin fapply phomotopy_mk_pupi, { intro h a, reflexivity }, - { intro a, refine !idp_con ⬝ _, refine !apd10_con ⬝ _ ⬝ !pi.apd10_eq_of_homotopy⁻¹, esimp, - refine (!apd10_prepostcompose ⬝ ap02 (g' a) !pi.apd10_eq_of_homotopy) ◾ - !pi.apd10_eq_of_homotopy } + { intro a, refine !idp_con ⬝ _, refine !apd10_con ⬝ _ ⬝ !apd10_eq_of_homotopy⁻¹, esimp, + refine (!apd10_prepostcompose ⬝ ap02 (g' a) !apd10_eq_of_homotopy) ◾ + !apd10_eq_of_homotopy } end definition pupi_functor_pid (A : Type) (B : A → Type*) : @@ -75,7 +75,7 @@ namespace pointed begin fapply phomotopy_mk_pupi, { intro h a, reflexivity }, - { intro a, refine !idp_con ⬝ !pi.apd10_eq_of_homotopy⁻¹ } + { intro a, refine !idp_con ⬝ !apd10_eq_of_homotopy⁻¹ } end definition pupi_functor_phomotopy {A A' : Type} {B : A → Type*} {B' : A' → Type*} @@ -86,8 +86,8 @@ namespace pointed fapply phomotopy_mk_pupi, { intro h a, exact q a (h (f a)) ⬝ ap (g' a) (apdt h (p a)) }, { intro a, esimp, - exact whisker_left _ !pi.apd10_eq_of_homotopy ⬝ !con.assoc ⬝ - to_homotopy_pt (q a) ⬝ !pi.apd10_eq_of_homotopy⁻¹ } + exact whisker_left _ !apd10_eq_of_homotopy ⬝ !con.assoc ⬝ + to_homotopy_pt (q a) ⬝ !apd10_eq_of_homotopy⁻¹ } end definition pupi_pequiv [constructor] {A A' : Type} {B : A → Type*} {B' : A' → Type*} @@ -634,7 +634,7 @@ namespace pointed fapply sigma_eq2, { refine !sigma_eq_pr1 ⬝ _ ⬝ !ap_sigma_pr1⁻¹, apply eq_of_fn_eq_fn eq_equiv_homotopy, - refine !apd10_eq_of_homotopy ⬝ _ ⬝ !apd10_to_fun_eq_of_phomotopy⁻¹, + refine !apd10_eq_of_homotopy_fn ⬝ _ ⬝ !apd10_to_fun_eq_of_phomotopy⁻¹, apply eq_of_homotopy, intro a, reflexivity }, { exact sorry } } end diff --git a/spectrum/basic.hlean b/spectrum/basic.hlean index defccbe..54815fb 100644 --- a/spectrum/basic.hlean +++ b/spectrum/basic.hlean @@ -8,8 +8,8 @@ Authors: Michael Shulman, Floris van Doorn, Egbert Rijke, Stefano Piceghello, Yu import homotopy.LES_of_homotopy_groups ..algebra.splice ..algebra.seq_colim ..homotopy.EM ..homotopy.fwedge ..pointed_cubes -open eq nat int susp pointed pmap sigma is_equiv equiv fiber algebra trunc trunc_index pi group - succ_str EM EM.ops function unit lift is_trunc +open eq nat int susp pointed sigma is_equiv equiv fiber algebra trunc trunc_index pi group + succ_str EM EM.ops function unit lift is_trunc sigma.ops /--------------------- Basic definitions @@ -19,7 +19,7 @@ open eq nat int susp pointed pmap sigma is_equiv equiv fiber algebra trunc trunc structure gen_prespectrum (N : succ_str) := (deloop : N → Type*) - (glue : Π(n:N), (deloop n) →* (Ω (deloop (S n)))) + (glue : Π(n:N), deloop n →* Ω (deloop (S n))) attribute gen_prespectrum.deloop [coercion] @@ -182,14 +182,12 @@ namespace spectrum definition smap_to_sigma [unfold 4] {N : succ_str} {X Y : gen_prespectrum N} (f : X →ₛ Y) : smap_sigma X Y := begin - induction f with f fsq, - exact sigma.mk f fsq, + exact sigma.mk (smap.to_fun f) (glue_square f), end definition smap_to_struc [unfold 4] {N : succ_str} {X Y : gen_prespectrum N} (f : smap_sigma X Y) : X →ₛ Y := begin - induction f with f fsq, - exact smap.mk f fsq, + exact smap.mk f.1 f.2, end definition smap_to_sigma_isretr {N : succ_str} {X Y : gen_prespectrum N} (f : smap_sigma X Y) : @@ -220,43 +218,25 @@ namespace spectrum glue_square f n definition sid [constructor] [refl] {N : succ_str} (E : gen_prespectrum N) : E →ₛ E := - smap.mk (λ n, pid (E n)) (λ n, psquare_of_phtpy_bot (ap1_pid) (psquare_of_pid_top_bot (phomotopy.rfl))) - - --print sid - -- smap.mk (λn, pid (E n)) - -- (λn, calc glue E n ∘* pid (E n) ~* glue E n : pcompose_pid - -- ... ~* pid (Ω(E (S n))) ∘* glue E n : pid_pcompose - -- ... ~* Ω→(pid (E (S n))) ∘* glue E n : pwhisker_right (glue E n) ap1_pid⁻¹*) + begin + apply smap.mk (λ n, pid (E n)), + intro n, exact phrfl ⬝vp* !ap1_pid + end definition scompose [trans] {N : succ_str} {X Y Z : gen_prespectrum N} (g : Y →ₛ Z) (f : X →ₛ Y) : X →ₛ Z := - smap.mk (λn, g n ∘* f n) - (λ n, psquare_of_phtpy_bot - (ap1_pcompose (g (S n)) (f (S n))) - (psquare_hcompose (glue_square f n) (glue_square g n))) - -/- - (λn, calc glue Z n ∘* to_fun g n ∘* to_fun f n - ~* (glue Z n ∘* to_fun g n) ∘* to_fun f n : passoc - ... ~* (Ω→(to_fun g (S n)) ∘* glue Y n) ∘* to_fun f n : pwhisker_right (to_fun f n) (glue_square g n) - ... ~* Ω→(to_fun g (S n)) ∘* (glue Y n ∘* to_fun f n) : passoc - ... ~* Ω→(to_fun g (S n)) ∘* (Ω→ (f (S n)) ∘* glue X n) : pwhisker_left (Ω→(to_fun g (S n))) (glue_square f n) - ... ~* (Ω→(to_fun g (S n)) ∘* Ω→(f (S n))) ∘* glue X n : passoc - ... ~* Ω→(to_fun g (S n) ∘* to_fun f (S n)) ∘* glue X n : pwhisker_right (glue X n) (ap1_pcompose _ _)) --/ + begin + apply smap.mk (λn, g n ∘* f n), + intro n, exact (glue_square f n ⬝h* glue_square g n) ⬝vp* !ap1_pcompose + end infixr ` ∘ₛ `:60 := scompose definition szero [constructor] {N : succ_str} (E F : gen_prespectrum N) : E →ₛ F := - smap.mk (λn, pconst (E n) (F n)) - (λn, psquare_of_phtpy_bot (ap1_pconst (E (S n)) (F (S n))) - (psquare_of_pconst_top_bot (glue E n) (glue F n))) - -/- - (λn, calc glue F n ∘* pconst (E n) (F n) ~* pconst (E n) (Ω(F (S n))) : pcompose_pconst - ... ~* pconst (Ω(E (S n))) (Ω(F (S n))) ∘* glue E n : pconst_pcompose - ... ~* Ω→(pconst (E (S n)) (F (S n))) ∘* glue E n : pwhisker_right (glue E n) (ap1_pconst _ _)) --/ + begin + apply smap.mk (λn, pconst (E n) (F n)), + intro n, exact !hpconst_square ⬝vp* !ap1_pconst + end definition stransport [constructor] {N : succ_str} {A : Type} {a a' : A} (p : a = a') (E : A → gen_prespectrum N) : E a →ₛ E a' := @@ -270,7 +250,7 @@ namespace spectrum (to_phomotopy : Πn, f n ~* g n) (glue_homotopy : Πn, ptube_v (to_phomotopy n) - (ap1_phomotopy (to_phomotopy (S n))) + (Ω⇒ (to_phomotopy (S n))) (glue_square f n) (glue_square g n)) @@ -282,6 +262,7 @@ namespace spectrum -/ infix ` ~ₛ `:50 := shomotopy + attribute [coercion] shomotopy.to_phomotopy definition shomotopy_compose {N : succ_str} {E F : gen_prespectrum N} {f g h : E →ₛ F} (p : g ~ₛ h) (q : f ~ₛ g) : f ~ₛ h := shomotopy.mk @@ -314,10 +295,7 @@ namespace spectrum (glue_square g n) definition shomotopy_to_sigma [unfold 6] {N : succ_str} {X Y : gen_prespectrum N} {f g : X →ₛ Y} (H : f ~ₛ g) : shomotopy_sigma f g := - begin - induction H with H Hsq, - exact sigma.mk H Hsq, - end + ⟨H, shomotopy.glue_homotopy H⟩ definition shomotopy_to_struct [unfold 6] {N : succ_str} {X Y : gen_prespectrum N} {f g : X →ₛ Y} (H : shomotopy_sigma f g) : f ~ₛ g := begin @@ -423,7 +401,7 @@ namespace spectrum refine change_path _ _, -- have p : eq_of_homotopy (λ n, eq_of_phomotopy phomotopy.rfl) = refl f, reflexivity, - refine (eq_of_homotopy_eta rfl)⁻¹ ⬝ _, + refine (eq_of_homotopy_apd10 rfl)⁻¹ ⬝ _, fapply ap (eq_of_homotopy), fapply eq_of_homotopy, intro n, refine (eq_of_phomotopy_refl _)⁻¹, -- fapply eq_of_phomotopy, fapply pathover_idp_of_eq, @@ -552,6 +530,7 @@ namespace spectrum smap.mk (λn, ppoint (f n)) begin intro n, +-- refine _ ⬝vp* !ppoint_loop_pfiber_inv, refine _ ⬝* !passoc, refine _ ⬝* pwhisker_right _ !ppoint_loop_pfiber_inv⁻¹*, rexact (pfiber_pequiv_of_square_ppoint (equiv_glue X n) (equiv_glue Y n) (sglue_square f n))⁻¹* @@ -562,7 +541,7 @@ namespace spectrum begin fapply shomotopy.mk, { intro n, exact pcompose_ppoint (f n) }, - { intro n, exact sorry } + { intro n, esimp, exact sorry } end /--------------------- @@ -750,9 +729,9 @@ namespace spectrum intro k, note sq1 := homotopy_group_homomorphism_psquare (k+2) (ptranspose (smap.glue_square f (-n + 2 +[ℤ] k))), note sq2 := homotopy_group_functor_psquare (k+2) (ap1_psquare (ptransport_natural E F f (add.assoc (-n + 2) k 1))), - note sq3 := (homotopy_group_succ_in_natural (k+2) (f (-n + 2 +[ℤ] (k+1))))⁻¹ʰᵗʸʰ, - note sq4 := hsquare_of_psquare sq2, - note rect := sq1 ⬝htyh sq4 ⬝htyh sq3, + -- note sq3 := (homotopy_group_succ_in_natural (k+2) (f (-n + 2 +[ℤ] (k +[ℕ] 1))))⁻¹ʰᵗʸʰ, + -- note sq4 := hsquare_of_psquare sq2, + -- note rect := sq1 ⬝htyh sq4 ⬝htyh sq3, exact sorry --sq1 ⬝htyh sq4 ⬝htyh sq3, end qed diff --git a/spectrum/trunc.hlean b/spectrum/trunc.hlean index ced901b..c81043a 100644 --- a/spectrum/trunc.hlean +++ b/spectrum/trunc.hlean @@ -7,7 +7,7 @@ Truncatedness and truncation of spectra -/ import .basic -open int trunc eq is_trunc lift unit pointed equiv is_equiv algebra EM +open int trunc eq is_trunc lift unit pointed equiv is_equiv algebra EM trunc_index namespace spectrum