/- Copyright (c) 2015-2018 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn, Egbert Rijke, Ulrik Buchholtz Constructions with groups -/ import algebra.group_theory hit.set_quotient types.list types.sum ..move_to_lib open eq algebra is_trunc set_quotient relation sigma sigma.ops prod sum list trunc function equiv prod.ops decidable is_equiv pointed universe variable u namespace group variables {G G' : Group} {g g' h h' k : G} {A B : AbGroup} /- Free Group of a pointed set -/ variables (X : Type*) [is_set X] {l l' : list (X ⊎ X)} namespace free_group inductive free_group_rel : list (X ⊎ X) → list (X ⊎ X) → Type := | rrefl : Πl, free_group_rel l l | cancel1 : Πx, free_group_rel [inl x, inr x] [] | cancel2 : Πx, free_group_rel [inr x, inl x] [] | cancelpt1 : free_group_rel [inl pt] [] | cancelpt2 : free_group_rel [inr pt] [] | resp_append : Π{l₁ l₂ l₃ l₄}, free_group_rel l₁ l₂ → free_group_rel l₃ l₄ → free_group_rel (l₁ ++ l₃) (l₂ ++ l₄) | rtrans : Π{l₁ l₂ l₃}, free_group_rel l₁ l₂ → free_group_rel l₂ l₃ → free_group_rel l₁ l₃ open free_group_rel local abbreviation R [reducible] := free_group_rel attribute free_group_rel.rrefl [refl] definition free_group_carrier [reducible] : Type := set_quotient (λx y, ∥R X x y∥) local abbreviation FG := free_group_carrier definition is_reflexive_R : is_reflexive (λx y, ∥R X x y∥) := begin constructor, intro s, apply tr, unfold R end local attribute is_reflexive_R [instance] variable {X} theorem rel_respect_flip (r : R X l l') : R X (map sum.flip l) (map sum.flip l') := begin induction r with l x x l₁ l₂ l₃ l₄ r₁ r₂ IH₁ IH₂ l₁ l₂ l₃ r₁ r₂ IH₁ IH₂, { reflexivity}, { repeat esimp [map], exact cancel2 x}, { repeat esimp [map], exact cancel1 x}, { exact cancelpt2 X }, { exact cancelpt1 X }, { rewrite [+map_append], exact resp_append IH₁ IH₂}, { exact rtrans IH₁ IH₂} end theorem rel_respect_reverse (r : R X l l') : R X (reverse l) (reverse l') := begin induction r with l x x l₁ l₂ l₃ l₄ r₁ r₂ IH₁ IH₂ l₁ l₂ l₃ r₁ r₂ IH₁ IH₂, { reflexivity}, { repeat esimp [map], exact cancel2 x}, { repeat esimp [map], exact cancel1 x}, { exact cancelpt1 X }, { exact cancelpt2 X }, { rewrite [+reverse_append], exact resp_append IH₂ IH₁}, { exact rtrans IH₁ IH₂} end definition free_group_one [constructor] : FG X := class_of [] definition free_group_inv [unfold 3] : FG X → FG X := quotient_unary_map (reverse ∘ map sum.flip) (λl l', trunc_functor -1 (rel_respect_reverse ∘ rel_respect_flip)) definition free_group_mul [unfold 3 4] : FG X → FG X → FG X := quotient_binary_map append (λl l', trunc.elim (λr m m', trunc.elim (λs, tr (resp_append r s)))) section local notation 1 := free_group_one local postfix ⁻¹ := free_group_inv local infix * := free_group_mul theorem free_group_mul_assoc (g₁ g₂ g₃ : FG X) : g₁ * g₂ * g₃ = g₁ * (g₂ * g₃) := begin refine set_quotient.rec_prop _ g₁, refine set_quotient.rec_prop _ g₂, refine set_quotient.rec_prop _ g₃, clear g₁ g₂ g₃, intro g₁ g₂ g₃, exact ap class_of !append.assoc end theorem free_group_one_mul (g : FG X) : 1 * g = g := begin refine set_quotient.rec_prop _ g, clear g, intro g, exact ap class_of !append_nil_left end theorem free_group_mul_one (g : FG X) : g * 1 = g := begin refine set_quotient.rec_prop _ g, clear g, intro g, exact ap class_of !append_nil_right end theorem free_group_mul_left_inv (g : FG X) : g⁻¹ * g = 1 := begin refine set_quotient.rec_prop _ g, clear g, intro g, apply eq_of_rel, apply tr, induction g with s l IH, { reflexivity}, { rewrite [▸*, map_cons, reverse_cons, concat_append], refine rtrans _ IH, apply resp_append, reflexivity, change R X ([flip s, s] ++ l) ([] ++ l), apply resp_append, induction s, apply cancel2, apply cancel1, reflexivity} end end end free_group open free_group -- export [reduce_hints] free_group variables (X) definition group_free_group [constructor] : group (free_group_carrier X) := group.mk _ free_group_mul free_group_mul_assoc free_group_one free_group_one_mul free_group_mul_one free_group_inv free_group_mul_left_inv definition free_group [constructor] : Group := Group.mk _ (group_free_group X) /- The universal property of the free group -/ variables {X G} definition free_group_inclusion [constructor] : X →* free_group X := ppi.mk (λ x, class_of [inl x]) (eq_of_rel (tr (free_group_rel.cancelpt1 X))) definition fgh_helper [unfold 6] (f : X → G) (g : G) (x : X ⊎ X) : G := g * sum.rec (λz, f z) (λz, (f z)⁻¹) x theorem fgh_helper_respect_rel (f : X →* G) (r : free_group_rel X l l') : Π(g : G), foldl (fgh_helper f) g l = foldl (fgh_helper f) g l' := begin induction r with l x x l₁ l₂ l₃ l₄ r₁ r₂ IH₁ IH₂ l₁ l₂ l₃ r₁ r₂ IH₁ IH₂: intro g, { reflexivity}, { unfold [foldl], apply mul_inv_cancel_right}, { unfold [foldl], apply inv_mul_cancel_right}, { unfold [foldl], rewrite (respect_pt f), apply mul_one }, { unfold [foldl], rewrite [respect_pt f, one_inv], apply mul_one }, { rewrite [+foldl_append, IH₁, IH₂]}, { exact !IH₁ ⬝ !IH₂} end theorem fgh_helper_mul (f : X → G) (l) : Π(g : G), foldl (fgh_helper f) g l = g * foldl (fgh_helper f) 1 l := begin induction l with s l IH: intro g, { unfold [foldl], exact !mul_one⁻¹}, { rewrite [+foldl_cons, IH], refine _ ⬝ (ap (λx, g * x) !IH⁻¹), rewrite [-mul.assoc, ↑fgh_helper, one_mul]} end definition free_group_hom [constructor] (f : X →* G) : free_group X →g G := begin fapply homomorphism.mk, { intro g, refine set_quotient.elim _ _ g, { intro l, exact foldl (fgh_helper f) 1 l}, { intro l l' r, esimp at *, refine trunc.rec _ r, clear r, intro r, exact fgh_helper_respect_rel f r 1}}, { refine set_quotient.rec_prop _, intro l, refine set_quotient.rec_prop _, intro l', esimp, refine !foldl_append ⬝ _, esimp, apply fgh_helper_mul} end definition free_group_hom_eq [constructor] {φ ψ : free_group X →g G} (H : Πx, φ (free_group_inclusion x) = ψ (free_group_inclusion x)) : φ ~ ψ := begin refine set_quotient.rec_prop _, intro l, induction l with s l IH, { exact respect_one φ ⬝ (respect_one ψ)⁻¹ }, { refine respect_mul φ (class_of [s]) (class_of l) ⬝ _ ⬝ (respect_mul ψ (class_of [s]) (class_of l))⁻¹, refine ap011 mul _ IH, induction s with x x, exact H x, refine respect_inv φ (class_of [inl x]) ⬝ ap inv (H x) ⬝ (respect_inv ψ (class_of [inl x]))⁻¹ } end definition fn_of_free_group_hom [unfold_full] (φ : free_group X →g G) : X →* G := ppi.mk (φ ∘ free_group_inclusion) begin refine (_ ⬝ respect_one φ), apply ap φ, apply eq_of_rel, apply tr, exact (free_group_rel.cancelpt1 X) end variables (X G) definition free_group_hom_equiv_fn : (free_group X →g G) ≃ (X →* G) := begin fapply equiv.MK, { exact fn_of_free_group_hom}, { exact free_group_hom}, { intro f, apply eq_of_phomotopy, fapply phomotopy.mk, { intro x, esimp, unfold [foldl], apply one_mul }, { apply is_prop.elim } }, { intro φ, apply homomorphism_eq, apply free_group_hom_eq, intro x, apply one_mul } end end group /- alternative definition of free group on a set with decidable equality -/ namespace list variables {X : Type.{u}} {v w : X ⊎ X} {l : list (X ⊎ X)} inductive is_reduced {X : Type} : list (X ⊎ X) → Type := | nil : is_reduced [] | singleton : Πv, is_reduced [v] | cons : Π⦃v w l⦄, sum.flip v ≠ w → is_reduced (w::l) → is_reduced (v::w::l) definition is_reduced_code (H : is_reduced l) : Type.{u} := begin cases l with v l, { exact is_reduced.nil = H }, cases l with w l, { exact is_reduced.singleton v = H }, exact Σ(pH : sum.flip v ≠ w × is_reduced (w::l)), is_reduced.cons pH.1 pH.2 = H end definition is_reduced_encode (H : is_reduced l) : is_reduced_code H := begin induction H with v v w l p Hl IH, { exact idp }, { exact idp }, { exact ⟨(p, Hl), idp⟩ } end definition is_prop_is_reduced (l : list (X ⊎ X)) : is_prop (is_reduced l) := begin apply is_prop.mk, intro H₁ H₂, induction H₁ with v v w l p Hl IH, { exact is_reduced_encode H₂ }, { exact is_reduced_encode H₂ }, { cases is_reduced_encode H₂ with pH' q, cases pH' with p' Hl', esimp at q, subst q, exact ap011 (λx y, is_reduced.cons x y) !is_prop.elim (IH Hl') } end definition rlist (X : Type) : Type := Σ(l : list (X ⊎ X)), is_reduced l local attribute [instance] is_prop_is_reduced definition rlist_eq {l l' : rlist X} (p : l.1 = l'.1) : l = l' := subtype_eq p definition is_trunc_rlist {n : ℕ₋₂} {X : Type} (H : is_trunc (n.+2) X) : is_trunc (n.+2) (rlist X) := begin apply is_trunc_sigma, { apply is_trunc_list, apply is_trunc_sum }, intro l, exact is_trunc_succ_of_is_prop _ _ _ end definition is_reduced_invert (v : X ⊎ X) : is_reduced (v::l) → is_reduced l := begin assert H : Π⦃l'⦄, is_reduced l' → l' = v::l → is_reduced l, { intro l' Hl', revert l, induction Hl' with v' v' w' l' p' Hl' IH: intro l p, { cases p }, { cases cons_eq_cons p with q r, subst r, apply is_reduced.nil }, { cases cons_eq_cons p with q r, subst r, exact Hl' }}, intro Hl, exact H Hl idp end definition is_reduced_invert_rev (v : X ⊎ X) : is_reduced (l++[v]) → is_reduced l := begin assert H : Π⦃l'⦄, is_reduced l' → l' = l++[v] → is_reduced l, { intro l' Hl', revert l, induction Hl' with v' v' w' l' p' Hl' IH: intro l p, { induction l: cases p }, { induction l with v'' l IH, apply is_reduced.nil, esimp [append] at p, cases cons_eq_cons p with q r, induction l: cases r }, { induction l with v'' l IH', cases p, induction l with v''' l IH'', apply is_reduced.singleton, do 2 esimp [append] at p, cases cons_eq_cons p with q r, cases cons_eq_cons r with r₁ r₂, subst r₁, subst q, subst r₂, apply is_reduced.cons p' (IH _ idp) }}, intro Hl, exact H Hl idp end definition rnil [constructor] : rlist X := ⟨[], !is_reduced.nil⟩ definition rsingleton [constructor] (x : X ⊎ X) : rlist X := ⟨[x], !is_reduced.singleton⟩ definition is_reduced_doubleton [constructor] {x y : X ⊎ X} (p : flip x ≠ y) : is_reduced [x, y] := is_reduced.cons p !is_reduced.singleton definition rdoubleton [constructor] {x y : X ⊎ X} (p : flip x ≠ y) : rlist X := ⟨[x, y], is_reduced_doubleton p⟩ definition is_reduced_concat (Hn : sum.flip v ≠ w) (Hl : is_reduced (concat v l)) : is_reduced (concat w (concat v l)) := begin assert H : Π⦃l'⦄, is_reduced l' → l' = concat v l → is_reduced (concat w l'), { clear Hl, intro l' Hl', revert l, induction Hl' with v' v' w' l' p' Hl' IH: intro l p, { exfalso, exact concat_neq_nil _ _ p⁻¹ }, { cases concat_eq_singleton p⁻¹ with q r, subst q, exact is_reduced_doubleton Hn }, { do 2 esimp [concat], apply is_reduced.cons p', cases l with x l, { cases p }, { apply IH l, esimp [concat] at p, revert p, generalize concat v l, intro l'' p, cases cons_eq_cons p with q r, exact r }}}, exact H Hl idp end definition is_reduced_reverse (H : is_reduced l) : is_reduced (reverse l) := begin induction H with v v w l p Hl IH, { apply is_reduced.nil }, { apply is_reduced.singleton }, { refine is_reduced_concat _ IH, intro q, apply p, subst q, apply flip_flip } end definition rreverse [constructor] (l : rlist X) : rlist X := ⟨reverse l.1, is_reduced_reverse l.2⟩ definition rreverse_rreverse (l : rlist X) : rreverse (rreverse l) = l := subtype_eq (reverse_reverse l.1) definition is_reduced_flip (H : is_reduced l) : is_reduced (map flip l) := begin induction H with v v w l p Hl IH, { apply is_reduced.nil }, { apply is_reduced.singleton }, { refine is_reduced.cons _ IH, intro q, apply p, exact !flip_flip⁻¹ ⬝ ap flip q ⬝ !flip_flip } end definition rflip [constructor] (l : rlist X) : rlist X := ⟨map flip l.1, is_reduced_flip l.2⟩ definition rcons' [decidable_eq X] (v : X ⊎ X) (l : list (X ⊎ X)) : list (X ⊎ X) := begin cases l with w l, { exact [v] }, { exact if q : sum.flip v = w then l else v::w::l } end definition is_reduced_rcons [decidable_eq X] (v : X ⊎ X) (Hl : is_reduced l) : is_reduced (rcons' v l) := begin cases l with w l, apply is_reduced.singleton, apply dite (sum.flip v = w): intro q, { have is_set (X ⊎ X), from !is_trunc_sum, rewrite [↑rcons', dite_true q _], exact is_reduced_invert w Hl }, { rewrite [↑rcons', dite_false q], exact is_reduced.cons q Hl, } end definition rcons [constructor] [decidable_eq X] (v : X ⊎ X) (l : rlist X) : rlist X := ⟨rcons' v l.1, is_reduced_rcons v l.2⟩ definition rcons_eq [decidable_eq X] : is_reduced (v::l) → rcons' v l = v :: l := begin assert H : Π⦃l'⦄, is_reduced l' → l' = v::l → rcons' v l = l', { intro l' Hl', revert l, induction Hl' with v' v' w' l' p' Hl' IH: intro l p, { cases p }, { cases cons_eq_cons p with q r, subst r, cases p, reflexivity }, { cases cons_eq_cons p with q r, subst q, subst r, rewrite [↑rcons', dite_false p'], }}, intro Hl, exact H Hl idp end definition rcons_eq2 [decidable_eq X] (H : is_reduced (v::l)) : ⟨v :: l, H⟩ = rcons v ⟨l, is_reduced_invert _ H⟩ := subtype_eq (rcons_eq H)⁻¹ definition rcons_rcons_eq [decidable_eq X] (p : flip v = w) (l : rlist X) : rcons v (rcons w l) = l := begin have is_set (X ⊎ X), from !is_trunc_sum, induction l with l Hl, apply rlist_eq, esimp, induction l with u l IH, { exact dite_true p _ }, { apply dite (sum.flip w = u): intro q, { rewrite [↑rcons' at {1}, dite_true q _], subst p, induction (!flip_flip⁻¹ ⬝ q), exact rcons_eq Hl }, { rewrite [↑rcons', dite_false q, dite_true p _] }} end definition rlist.rec [decidable_eq X] {P : rlist X → Type} (P1 : P rnil) (Pcons : Πv l, P l → P (rcons v l)) (l : rlist X) : P l := begin induction l with l Hl, induction Hl with v v w l p Hl IH, { exact P1 }, { exact Pcons v rnil P1 }, { exact transport P (subtype_eq (rcons_eq (is_reduced.cons p Hl))) (Pcons v ⟨w :: l, Hl⟩ IH) } end definition reduce_list' [decidable_eq X] (l : list (X ⊎ X)) : list (X ⊎ X) := begin induction l with v l IH, { exact [] }, { exact rcons' v IH } end definition is_reduced_reduce_list [decidable_eq X] (l : list (X ⊎ X)) : is_reduced (reduce_list' l) := begin induction l with v l IH, apply is_reduced.nil, apply is_reduced_rcons, exact IH end definition reduce_list [constructor] [decidable_eq X] (l : list (X ⊎ X)) : rlist X := ⟨reduce_list' l, is_reduced_reduce_list l⟩ definition rappend' [decidable_eq X] (l : list (X ⊎ X)) (l' : rlist X) : rlist X := foldr rcons l' l definition rappend_rcons' [decidable_eq X] (x : X ⊎ X) (l₁ : list (X ⊎ X)) (l₂ : rlist X) : rappend' (rcons' x l₁) l₂ = rcons x (rappend' l₁ l₂) := begin induction l₁ with x' l₁ IH, { reflexivity }, { apply dite (sum.flip x = x'): intro p, { have is_set (X ⊎ X), from !is_trunc_sum, rewrite [↑rcons', dite_true p _], exact (rcons_rcons_eq p _)⁻¹ }, { rewrite [↑rcons', dite_false p] }} end definition rappend_cons' [decidable_eq X] (x : X ⊎ X) (l₁ : list (X ⊎ X)) (l₂ : rlist X) : rappend' (x::l₁) l₂ = rcons x (rappend' l₁ l₂) := idp definition rappend [decidable_eq X] (l l' : rlist X) : rlist X := rappend' l.1 l' definition rappend_rcons [decidable_eq X] (x : X ⊎ X) (l₁ l₂ : rlist X) : rappend (rcons x l₁) l₂ = rcons x (rappend l₁ l₂) := rappend_rcons' x l₁.1 l₂ definition rappend_assoc [decidable_eq X] (l₁ l₂ l₃ : rlist X) : rappend (rappend l₁ l₂) l₃ = rappend l₁ (rappend l₂ l₃) := begin induction l₁ with l₁ h, unfold rappend, clear h, induction l₁ with x l₁ IH, { reflexivity }, { rewrite [rappend_cons', ▸*, rappend_rcons', IH] } end definition rappend_rnil [decidable_eq X] (l : rlist X) : rappend l rnil = l := begin induction l with l H, apply rlist_eq, esimp, induction H with v v w l p Hl IH, { reflexivity }, { reflexivity }, { rewrite [↑rappend at *, rappend_cons', ↑rcons, IH, ↑rcons', dite_false p] } end definition rnil_rappend [decidable_eq X] (l : rlist X) : rappend rnil l = l := by reflexivity definition rsingleton_rappend [decidable_eq X] (x : X ⊎ X) (l : rlist X) : rappend (rsingleton x) l = rcons x l := by reflexivity definition rappend_left_inv [decidable_eq X] (l : rlist X) : rappend (rflip (rreverse l)) l = rnil := begin induction l with l H, apply rlist_eq, induction l with x l IH, { reflexivity }, { have is_set (X ⊎ X), from !is_trunc_sum, rewrite [↑rappend, ↑rappend', reverse_cons, map_concat, foldr_concat], refine ap (λx, (rappend' _ x).1) (rlist_eq (dite_true !flip_flip _)) ⬝ IH (is_reduced_invert _ H) } end definition rappend'_eq [decidable_eq X] (v : X ⊎ X) (l : list (X ⊎ X)) (H : is_reduced (l ++ [v])) : ⟨l ++ [v], H⟩ = rappend' l (rsingleton v) := begin assert Hlem : Π⦃l'⦄ (Hl' : is_reduced l'), l' = l ++ [v] → rappend' l (rsingleton v) = ⟨l', Hl'⟩, { intro l' Hl', clear H, revert l, induction Hl' with v' v' w' l' p' Hl' IH: intro l p, { induction l: cases p }, { induction l with v'' l IH, { cases cons_eq_cons p with q r, subst q }, { esimp [append] at p, cases cons_eq_cons p with q r, induction l: cases r }}, { induction l with v'' l IH', cases p, induction l with v''' l IH'', { do 2 esimp [append] at p, cases cons_eq_cons p with q r, subst q, cases cons_eq_cons r with q r', subst q, subst r', apply subtype_eq, exact dite_false p' }, { do 2 esimp [append] at p, cases cons_eq_cons p with q r, cases cons_eq_cons r with r₁ r₂, subst r₁, subst q, subst r₂, rewrite [rappend_cons', IH (w' :: l) idp], apply subtype_eq, apply rcons_eq, apply is_reduced.cons p' Hl' }}}, exact (Hlem H idp)⁻¹ end definition rappend_eq [decidable_eq X] (v : X ⊎ X) (l : list (X ⊎ X)) (H : is_reduced (l ++ [v])) : ⟨l ++ [v], H⟩ = rappend ⟨l, is_reduced_invert_rev _ H⟩ (rsingleton v) := rappend'_eq v l H definition rreverse_cons [decidable_eq X] (v : X ⊎ X) (l : list (X ⊎ X)) (H : is_reduced (v :: l)) : rreverse ⟨v::l, H⟩ = rappend ⟨reverse l, is_reduced_reverse (is_reduced_invert _ H)⟩ (rsingleton v) := begin refine dpair_eq_dpair (reverse_cons _ _) !pathover_tr ⬝ _, refine dpair_eq_dpair (concat_eq_append _ _) !pathover_tr ⬝ _, refine !rappend_eq ⬝ _, exact ap (λx, rappend ⟨_, x⟩ _) !is_prop.elim end definition rreverse_rcons [decidable_eq X] (v : X ⊎ X) (l : rlist X) : rreverse (rcons v l) = rappend (rreverse l) (rsingleton v) := begin induction l with l Hl, induction l with v' l IH, reflexivity, { symmetry, refine ap (λx, rappend x _) !rreverse_cons ⬝ _, apply dite (sum.flip v = v'): intro p, { have is_set (X ⊎ X), from !is_trunc_sum, rewrite [↑rcons, ↑rcons', dpair_eq_dpair (dite_true p _) !pathover_tr ], refine !rappend_assoc ⬝ _, refine ap (rappend _) !rsingleton_rappend ⬝ _, refine ap (rappend _) (subtype_eq _) ⬝ !rappend_rnil, exact dite_true (ap flip p⁻¹ ⬝ flip_flip v) _ }, { rewrite [↑rcons, ↑rcons', dpair_eq_dpair (dite_false p) !pathover_tr], note H1 := is_reduced_reverse (transport is_reduced (dite_false p) (is_reduced_rcons v Hl)), rewrite [+reverse_cons at H1, +concat_eq_append at H1], note H2 := is_reduced_invert_rev _ H1, refine ap (λx, rappend x _) (rappend_eq _ _ H2)⁻¹ ⬝ _, refine (rappend_eq _ _ H1)⁻¹ ⬝ _, apply subtype_eq, rewrite [-+concat_eq_append] }} end definition rlist.rec_rev [decidable_eq X] {P : rlist X → Type} (P1 : P rnil) (Pappend : Πl v, P l → P (rappend l (rsingleton v))) : Π(l : rlist X), P l := begin assert H : Π(l : rlist X), P (rreverse l), { refine rlist.rec _ _, exact P1, intro v l p, rewrite [rreverse_rcons], apply Pappend, exact p }, intro l, exact transport P (rreverse_rreverse l) (H (rreverse l)) end end list open list namespace group open sigma.ops variables (X : Type) [decidable_eq X] {G : InfGroup} definition group_dfree_group [constructor] : group (rlist X) := group.mk (is_trunc_rlist _) rappend rappend_assoc rnil rnil_rappend rappend_rnil (rflip ∘ rreverse) rappend_left_inv definition dfree_group [constructor] : Group := Group.mk _ (group_dfree_group X) variable {X} definition dfree_group_inclusion [constructor] [reducible] (x : X) : dfree_group X := rsingleton (inl x) definition rsingleton_inr [constructor] (x : X) : rsingleton (inr x) = (dfree_group_inclusion x)⁻¹ :> dfree_group X := by reflexivity local attribute [instance] is_prop_is_reduced definition dfree_group.rec {P : dfree_group X → Type} (P1 : P 1) (Pcons : Πv g, P g → P (rsingleton v * g)) : Π(g : dfree_group X), P g := rlist.rec P1 Pcons definition dfree_group.rec_rev {P : dfree_group X → Type} (P1 : P 1) (Pcons : Πg v, P g → P (g * rsingleton v)) : Π(g : dfree_group X), P g := rlist.rec_rev P1 Pcons -- definition dfree_group.rec2 [constructor] {P : dfree_group X → Type} -- (P1 : P 1) (Pcons : Πg x, P g → P (dfree_group_inclusion x * g)) -- (Pinv : Πg, P g → P g⁻¹) : Π(g : dfree_group X), P g := -- begin -- refine dfree_group.rec _ _, exact P1, -- intro g v p, induction v with x x, exact Pcons g x p, -- end definition dfgh_helper [unfold 6] (f : X → G) (g : G) (x : X ⊎ X) : G := g * sum.rec (λx, f x) (λx, (f x)⁻¹) x theorem dfgh_helper_mul (f : X → G) (l : list (X ⊎ X)) : Π(g : G), foldl (dfgh_helper f) g l = g * foldl (dfgh_helper f) 1 l := begin induction l with s l IH: intro g, { unfold [foldl], exact !mul_one⁻¹}, { rewrite [+foldl_cons, IH], refine _ ⬝ (ap (λx, g * x) !IH⁻¹), rewrite [-mul.assoc, ↑dfgh_helper, one_mul] } end definition dfgh_helper_rcons (f : X → G) (g : G) (x : X ⊎ X) {l : list (X ⊎ X)} : foldl (dfgh_helper f) g (rcons' x l) = foldl (dfgh_helper f) g (x :: l) := begin cases l with x' l, reflexivity, apply dite (sum.flip x = x'): intro q, { have is_set (X ⊎ X), from !is_trunc_sum, rewrite [↑rcons', dite_true q _, foldl_cons, foldl_cons, -q], induction x with x, rewrite [↑dfgh_helper,mul_inv_cancel_right], rewrite [↑dfgh_helper,inv_mul_cancel_right] }, { rewrite [↑rcons', dite_false q] } end definition dfgh_helper_rappend (f : X → G) (g : G) (l l' : rlist X) : foldl (dfgh_helper f) g (rappend l l').1 = foldl (dfgh_helper f) g (l.1 ++ l'.1) := begin revert g, induction l with l lH, unfold rappend, clear lH, induction l with v l IH: intro g, reflexivity, rewrite [rappend_cons', ↑rcons, dfgh_helper_rcons, foldl_cons, IH] end local attribute [coercion] InfGroup_of_Group definition dfree_group_inf_hom [constructor] (G : InfGroup) (f : X → G) : dfree_group X →∞g G := inf_homomorphism.mk (λx, foldl (dfgh_helper f) 1 x.1) (λl₁ l₂, !dfgh_helper_rappend ⬝ !foldl_append ⬝ !dfgh_helper_mul) definition dfree_group_inf_hom_eq [constructor] {G : InfGroup} {φ ψ : dfree_group X →∞g G} (H : Πx, φ (dfree_group_inclusion x) = ψ (dfree_group_inclusion x)) : φ ~ ψ := begin assert H2 : Πv, φ (rsingleton v) = ψ (rsingleton v), { intro v, induction v with x x, exact H x, exact to_respect_inv_inf φ _ ⬝ ap inv (H x) ⬝ (to_respect_inv_inf ψ _)⁻¹ }, refine dfree_group.rec _ _, { exact !to_respect_one_inf ⬝ !to_respect_one_inf⁻¹ }, { intro v g p, exact !to_respect_mul_inf ⬝ ap011 mul (H2 v) p ⬝ !to_respect_mul_inf⁻¹ } end theorem dfree_group_inf_hom_inclusion [constructor] (G : InfGroup) (f : X → G) (x : X) : dfree_group_inf_hom G f (dfree_group_inclusion x) = f x := by rewrite [▸*, foldl_cons, foldl_nil, ↑dfgh_helper, one_mul] definition dfree_group_hom [constructor] {G : Group} (f : X → G) : dfree_group X →g G := homomorphism_of_inf_homomorphism (dfree_group_inf_hom G f) -- todo: use the inf-version definition dfree_group_hom_eq [constructor] {G : Group} {φ ψ : dfree_group X →g G} (H : Πx, φ (dfree_group_inclusion x) = ψ (dfree_group_inclusion x)) : φ ~ ψ := begin assert H2 : Πv, φ (rsingleton v) = ψ (rsingleton v), { intro v, induction v with x x, exact H x, exact to_respect_inv φ _ ⬝ ap inv (H x) ⬝ (to_respect_inv ψ _)⁻¹ }, refine dfree_group.rec _ _, { exact !to_respect_one ⬝ !to_respect_one⁻¹ }, { intro v g p, exact !to_respect_mul ⬝ ap011 mul (H2 v) p ⬝ !to_respect_mul⁻¹ } end definition is_mul_hom_dfree_group_fun {G : InfGroup} {f : dfree_group X → G} (H1 : f 1 = 1) (H2 : Πv g, f (rsingleton v * g) = f (rsingleton v) * f g) : is_mul_hom f := begin refine dfree_group.rec _ _, { intro g, exact ap f (one_mul g) ⬝ (ap (λx, x * _) H1 ⬝ one_mul (f g))⁻¹ }, { intro g v p h, exact ap f !mul.assoc ⬝ !H2 ⬝ ap (mul _) !p ⬝ (ap (λx, x * _) !H2 ⬝ !mul.assoc)⁻¹ } end definition dfree_group_hom_of_fun [constructor] {G : InfGroup} (f : dfree_group X → G) (H1 : f 1 = 1) (H2 : Πv g, f (rsingleton v * g) = f (rsingleton v) * f g) : dfree_group X →∞g G := inf_homomorphism.mk f (is_mul_hom_dfree_group_fun H1 H2) variable (X) open option definition free_group_of_dfree_group [constructor] : dfree_group X →g free_group X₊ := dfree_group_hom (free_group_inclusion ∘ some) definition dfree_group_of_free_group [constructor] : free_group X₊ →g dfree_group X := free_group_hom (ppi.mk (option.rec 1 dfree_group_inclusion) idp) definition dfree_group_isomorphism : dfree_group X ≃g free_group X₊ := begin apply isomorphism.MK (free_group_of_dfree_group X) (dfree_group_of_free_group X), { apply free_group_hom_eq, intro x, induction x with x, { symmetry, apply eq_of_rel, apply tr, exact free_group.free_group_rel.cancelpt1 X₊ }, { reflexivity } }, { apply dfree_group_hom_eq, intro x, reflexivity } end end group