/- Copyright (c) 2016 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn Given a sequence of LES's, we want to splice them together. ... -> G_{1,k+1} -> G_{1,k} -> ... -> G_{1,1} -> G_{1,0} ... -> G_{2,k+1} -> G_{2,k} -> ... -> G_{2,1} -> G_{2,0} ... ... -> G_{n,k+1} -> G_{n,k} -> ... -> G_{n,1} -> G_{n,0} ... If we have equivalences: G_{n,m) = G_{n+1,m+k} G_{n,m+1) = G_{n+1,m+k+1} such that the evident squares commute, we can obtain a single sequence ... -> G_{n,m} -> G_{n+1,m+k-1} -> ... -> G_{n+1,m} -> G_{n+2,m+k-1} -> ... However, in this formalization, we will only do this for k = 3, because we get more definitional equalities in this specific case than in the general case. The reason is that we need to check whether a term `x : fin (succ k)` represents `k`. If we do this in general using if x = k then ... else ... we don't get definitionally that x = k and the successor of x is 0, which means that when defining maps G_{n,m} -> G_{n+1,m+k-1} we need to transport along those paths, which is annoying. So far, the splicing seems to be only needed for k = 3, so it seems to be sufficient. -/ import homotopy.chain_complex open prod prod.ops succ_str fin pointed nat algebra eq is_trunc equiv is_equiv /- fin -/ -- definition cyclic_pred {n : ℕ} (x : fin n) : fin n := -- begin -- cases n with n, -- { exfalso, apply not_lt_zero _ (is_lt x)}, -- { cases x with m H, cases m with m, -- { exact fin.mk n !self_lt_succ}, -- { apply fin.mk m, exact lt.trans !self_lt_succ H}} -- end -- definition stratified_succ2 {N : succ_str} {n : ℕ} (x : stratified_type N n) -- : stratified_type N n := -- (nat.cases_on (pr2 x) (S (pr1 x)) (λa, pr1 x), cyclic_pred (pr2 x)) -- definition stratified2 [reducible] [constructor] (N : succ_str) (n : ℕ) : succ_str := -- succ_str.mk (stratified_type N n) stratified_succ2 namespace chain_complex definition stratified_succ_max {N : succ_str} {n : ℕ} (x : stratified N n) (p : val (pr2 x) = n) : S x = (S (pr1 x), 0) := begin unfold [stratified, succ_str.S, stratified_succ], apply prod_eq, { exact if_pos p}, { exact dif_pos p} end definition splice_type [unfold 5] {N M : succ_str} (G : N → chain_complex M) (m : M) (x : stratified N 2) : Set* := G x.1 (m +' val x.2) definition splice_map {N M : succ_str} (G : N → chain_complex M) (m : M) (e0 : Πn, G (S n) m ≃* G n (m +' 3)) : Π(x : stratified N 2), splice_type G m (S x) →* splice_type G m x | (n, fin.mk 0 H) := proof cc_to_fn (G n) m qed | (n, fin.mk 1 H) := proof cc_to_fn (G n) (S m) qed | (n, fin.mk 2 H) := proof cc_to_fn (G n) (S (S m)) ∘* e0 n qed | (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end definition is_chain_complex_splice_map {N M : succ_str} (G : N → chain_complex M) (m : M) (e0 : Πn, G (S n) m ≃* G n (m +' 3)) (e1 : Πn, G (S n) (S m) ≃* G n (S (m +' 3))) (p : Πn, e0 n ∘* cc_to_fn (G (S n)) m ~ cc_to_fn (G n) (m +' 3) ∘* e1 n) : Π(x : stratified N 2) (y : splice_type G m (S (S x))), splice_map G m e0 x (splice_map G m e0 (S x) y) = pt | (n, fin.mk 0 H) y := proof cc_is_chain_complex (G n) m y qed | (n, fin.mk 1 H) y := proof cc_is_chain_complex (G n) (S m) (e0 n y) qed | (n, fin.mk 2 H) y := proof ap (cc_to_fn (G n) (S (S m))) (p n y) ⬝ cc_is_chain_complex (G n) (S (S m)) (e1 n y) qed | (n, fin.mk (k+3) H) y := begin exfalso, apply lt_le_antisymm H, apply le_add_left end definition splice [constructor] {N M : succ_str} (G : N → chain_complex M) (m : M) (e0 : Πn, G (S n) m ≃* G n (m +' 3)) (e1 : Πn, G (S n) (S m) ≃* G n (S (m +' 3))) (p : Πn, e0 n ∘* cc_to_fn (G (S n)) m ~ cc_to_fn (G n) (m +' 3) ∘* e1 n) : chain_complex (stratified N 2) := chain_complex.mk (splice_type G m) (splice_map G m e0) (is_chain_complex_splice_map G m e0 e1 p) definition is_exact_splice {N M : succ_str} (G : N → chain_complex M) (m : M) (e0 : Πn, G (S n) m ≃* G n (m +' 3)) (e1 : Πn, G (S n) (S m) ≃* G n (S (m +' 3))) (p : Πn, e0 n ∘* cc_to_fn (G (S n)) m ~ cc_to_fn (G n) (m +' 3) ∘* e1 n) (H2 : Πn, is_exact (G n)) : Π(x : stratified N 2), is_exact_at (splice G m e0 e1 p) x | (n, fin.mk 0 H) := proof H2 n m qed | (n, fin.mk 1 H) := begin intro y q, induction H2 n (S m) proof y qed proof q qed with x r, apply image.mk ((e0 n)⁻¹ᵉ x), exact ap (pmap.to_fun (cc_to_fn (G n) (S (S m)))) (to_right_inv (e0 n) x) ⬝ r end | (n, fin.mk 2 H) := begin intro y q, induction H2 n (S (S m)) proof e0 n y qed proof q qed with x r, apply image.mk ((e1 n)⁻¹ᵉ x), refine _ ⬝ to_left_inv (e0 n) y, refine _ ⬝ ap (e0 n)⁻¹ᵉ r, apply @eq_inv_of_eq _ _ (e0 n), refine p n ((e1 n)⁻¹ᵉ x) ⬝ _, apply ap (cc_to_fn (G n) (m +' 3)), exact to_right_inv (e1 n) x end | (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end end chain_complex