/- submodules and quotient modules -/ -- Authors: Floris van Doorn, Jeremy Avigad import .left_module .quotient_group .module_chain_complex open algebra eq group sigma sigma.ops is_trunc function trunc equiv is_equiv property universe variable u namespace left_module /- submodules -/ variables {R : Ring} {M M₁ M₁' M₂ M₂' M₃ M₃' : LeftModule R} {m m₁ m₂ : M} structure is_submodule [class] (M : LeftModule R) (S : property M) : Type := (zero_mem : 0 ∈ S) (add_mem : Π⦃g h⦄, g ∈ S → h ∈ S → g + h ∈ S) (smul_mem : Π⦃g⦄ (r : R), g ∈ S → r • g ∈ S) definition zero_mem {R : Ring} {M : LeftModule R} (S : property M) [is_submodule M S] := is_submodule.zero_mem S definition add_mem {R : Ring} {M : LeftModule R} (S : property M) [is_submodule M S] := @is_submodule.add_mem R M S definition smul_mem {R : Ring} {M : LeftModule R} (S : property M) [is_submodule M S] := @is_submodule.smul_mem R M S theorem neg_mem (S : property M) [is_submodule M S] ⦃m⦄ (H : m ∈ S) : -m ∈ S := transport (λx, x ∈ S) (neg_one_smul m) (smul_mem S (- 1) H) theorem is_normal_submodule (S : property M) [is_submodule M S] ⦃m₁ m₂⦄ (H : S m₁) : S (m₂ + m₁ + (-m₂)) := transport (λx, S x) (by rewrite [add.comm, neg_add_cancel_left]) H -- open is_submodule variables {S : property M} [is_submodule M S] {S₂ : property M₂} [is_submodule M₂ S₂] definition is_subgroup_of_is_submodule [instance] (S : property M) [is_submodule M S] : is_subgroup (AddGroup_of_AddAbGroup M) S := is_subgroup.mk (zero_mem S) (add_mem S) (neg_mem S) definition is_subgroup_of_is_submodule' [instance] (S : property M) [is_submodule M S] : is_subgroup (Group_of_AbGroup (AddAbGroup_of_LeftModule M)) S := is_subgroup.mk (zero_mem S) (add_mem S) (neg_mem S) definition submodule' (S : property M) [is_submodule M S] : AddAbGroup := ab_subgroup S -- (subgroup_rel_of_submodule_rel S) definition submodule_smul [constructor] (S : property M) [is_submodule M S] (r : R) : submodule' S →a submodule' S := ab_subgroup_functor (smul_homomorphism M r) (λg, smul_mem S r) definition submodule_smul_right_distrib (r s : R) (n : submodule' S) : submodule_smul S (r + s) n = submodule_smul S r n + submodule_smul S s n := begin refine subgroup_functor_homotopy _ _ _ n ⬝ !subgroup_functor_mul⁻¹ᵖ, intro m, exact to_smul_right_distrib r s m end definition submodule_mul_smul' (r s : R) (n : submodule' S) : submodule_smul S (r * s) n = (submodule_smul S r ∘g submodule_smul S s) n := begin refine subgroup_functor_homotopy _ _ _ n ⬝ (subgroup_functor_compose _ _ _ _ n)⁻¹ᵖ, intro m, exact to_mul_smul r s m end definition submodule_mul_smul (r s : R) (n : submodule' S) : submodule_smul S (r * s) n = submodule_smul S r (submodule_smul S s n) := by rexact submodule_mul_smul' r s n definition submodule_one_smul (n : submodule' S) : submodule_smul S (1 : R) n = n := begin refine subgroup_functor_homotopy _ _ _ n ⬝ !subgroup_functor_gid, intro m, exact to_one_smul m end definition submodule (S : property M) [is_submodule M S] : LeftModule R := LeftModule_of_AddAbGroup (submodule' S) (submodule_smul S) (λr, homomorphism.addstruct (submodule_smul S r)) submodule_smul_right_distrib submodule_mul_smul submodule_one_smul definition submodule_incl [constructor] (S : property M) [is_submodule M S] : submodule S →lm M := lm_homomorphism_of_group_homomorphism (incl_of_subgroup _) begin intro r m, induction m with m hm, reflexivity end definition hom_lift [constructor] {K : property M₂} [is_submodule M₂ K] (φ : M₁ →lm M₂) (h : Π (m : M₁), φ m ∈ K) : M₁ →lm submodule K := lm_homomorphism_of_group_homomorphism (hom_lift (group_homomorphism_of_lm_homomorphism φ) _ h) begin intro r g, exact subtype_eq (to_respect_smul φ r g) end definition submodule_functor [constructor] {S : property M₁} [is_submodule M₁ S] {K : property M₂} [is_submodule M₂ K] (φ : M₁ →lm M₂) (h : Π (m : M₁), m ∈ S → φ m ∈ K) : submodule S →lm submodule K := hom_lift (φ ∘lm submodule_incl S) (by intro m; exact h m.1 m.2) definition hom_lift_compose {K : property M₃} [is_submodule M₃ K] (φ : M₂ →lm M₃) (h : Π (m : M₂), φ m ∈ K) (ψ : M₁ →lm M₂) : hom_lift φ h ∘lm ψ ~ hom_lift (φ ∘lm ψ) proof (λm, h (ψ m)) qed := by reflexivity definition hom_lift_homotopy {K : property M₂} [is_submodule M₂ K] {φ : M₁ →lm M₂} {h : Π (m : M₁), φ m ∈ K} {φ' : M₁ →lm M₂} {h' : Π (m : M₁), φ' m ∈ K} (p : φ ~ φ') : hom_lift φ h ~ hom_lift φ' h' := λg, subtype_eq (p g) definition incl_smul (S : property M) [is_submodule M S] (r : R) (m : M) (h : S m) : r • ⟨m, h⟩ = ⟨_, smul_mem S r h⟩ :> submodule S := by reflexivity definition property_submodule (S₁ S₂ : property M) [is_submodule M S₁] [is_submodule M S₂] : property (submodule S₁) := {m | submodule_incl S₁ m ∈ S₂} definition is_submodule_property_submodule [instance] (S₁ S₂ : property M) [is_submodule M S₁] [is_submodule M S₂] : is_submodule (submodule S₁) (property_submodule S₁ S₂) := is_submodule.mk (mem_property_of (zero_mem S₂)) (λm n p q, mem_property_of (add_mem S₂ (of_mem_property_of p) (of_mem_property_of q))) begin intro m r p, induction m with m hm, apply mem_property_of, apply smul_mem S₂, exact (of_mem_property_of p) end definition eq_zero_of_mem_property_submodule_trivial [constructor] {S₁ S₂ : property M} [is_submodule M S₁] [is_submodule M S₂] (h : Π⦃m⦄, m ∈ S₂ → m = 0) ⦃m : submodule S₁⦄ (Sm : m ∈ property_submodule S₁ S₂) : m = 0 := begin fapply subtype_eq, apply h (of_mem_property_of Sm) end definition is_contr_submodule (S : property M) [is_submodule M S] (H : is_contr M) : is_contr (submodule S) := have is_prop M, from _, have is_prop (submodule S), from @is_trunc_sigma _ _ _ this _, is_contr_of_inhabited_prop 0 this definition submodule_isomorphism [constructor] (S : property M) [is_submodule M S] (h : Πg, g ∈ S) : submodule S ≃lm M := isomorphism.mk (submodule_incl S) (is_equiv_incl_of_subgroup S h) definition submodule_isomorphism_submodule [constructor] {S : property M₁} [is_submodule M₁ S] {K : property M₂} [is_submodule M₂ K] (φ : M₁ ≃lm M₂) (h : Π (m : M₁), m ∈ S ↔ φ m ∈ K) : submodule S ≃lm submodule K := lm_isomorphism_of_group_isomorphism (subgroup_isomorphism_subgroup (group_isomorphism_of_lm_isomorphism φ) h) (by rexact to_respect_smul (submodule_functor φ (λg, iff.mp (h g)))) /- quotient modules -/ definition quotient_module' (S : property M) [is_submodule M S] : AddAbGroup := quotient_ab_group S -- (subgroup_rel_of_submodule_rel S) definition quotient_module_smul [constructor] (S : property M) [is_submodule M S] (r : R) : quotient_module' S →a quotient_module' S := quotient_ab_group_functor (smul_homomorphism M r) (λg, smul_mem S r) definition quotient_module_smul_right_distrib (r s : R) (n : quotient_module' S) : quotient_module_smul S (r + s) n = quotient_module_smul S r n + quotient_module_smul S s n := begin refine quotient_ab_group_functor_homotopy _ _ _ n ⬝ !quotient_ab_group_functor_mul⁻¹, intro m, exact to_smul_right_distrib r s m end definition quotient_module_mul_smul' (r s : R) (n : quotient_module' S) : quotient_module_smul S (r * s) n = (quotient_module_smul S r ∘g quotient_module_smul S s) n := begin apply eq.symm, apply eq.trans (quotient_ab_group_functor_compose _ _ _ _ n), apply quotient_ab_group_functor_homotopy, intro m, exact eq.symm (to_mul_smul r s m) end -- previous proof: -- refine quotient_ab_group_functor_homotopy _ _ _ n ⬝ -- (quotient_ab_group_functor_compose (quotient_module_smul S r) (quotient_module_smul S s) _ _ n)⁻¹ᵖ, -- intro m, to_mul_smul r s m definition quotient_module_mul_smul (r s : R) (n : quotient_module' S) : quotient_module_smul S (r * s) n = quotient_module_smul S r (quotient_module_smul S s n) := by rexact quotient_module_mul_smul' r s n definition quotient_module_one_smul (n : quotient_module' S) : quotient_module_smul S (1 : R) n = n := begin refine quotient_ab_group_functor_homotopy _ _ _ n ⬝ !quotient_ab_group_functor_gid, intro m, exact to_one_smul m end variable (S) definition quotient_module (S : property M) [is_submodule M S] : LeftModule R := LeftModule_of_AddAbGroup (quotient_module' S) (quotient_module_smul S) (λr, homomorphism.addstruct (quotient_module_smul S r)) quotient_module_smul_right_distrib quotient_module_mul_smul quotient_module_one_smul definition quotient_map [constructor] : M →lm quotient_module S := lm_homomorphism_of_group_homomorphism (ab_qg_map _) (λr g, idp) definition quotient_map_eq_zero (m : M) (H : S m) : quotient_map S m = 0 := @ab_qg_map_eq_one _ _ _ _ H definition rel_of_quotient_map_eq_zero (m : M) (H : quotient_map S m = 0) : S m := @rel_of_qg_map_eq_one _ _ _ m H variable {S} definition respect_smul_quotient_elim [constructor] (φ : M →lm M₂) (H : Π⦃m⦄, m ∈ S → φ m = 0) (r : R) (m : quotient_module S) : quotient_ab_group_elim (group_homomorphism_of_lm_homomorphism φ) H (@has_scalar.smul _ (quotient_module S) _ r m) = r • quotient_ab_group_elim (group_homomorphism_of_lm_homomorphism φ) H m := begin revert m, refine @set_quotient.rec_prop _ _ _ (λ x, !is_trunc_eq) _, intro m, exact to_respect_smul φ r m end definition quotient_elim [constructor] (φ : M →lm M₂) (H : Π⦃m⦄, m ∈ S → φ m = 0) : quotient_module S →lm M₂ := lm_homomorphism_of_group_homomorphism (quotient_ab_group_elim (group_homomorphism_of_lm_homomorphism φ) H) (respect_smul_quotient_elim φ H) definition is_prop_quotient_module (S : property M) [is_submodule M S] [H : is_prop M] : is_prop (quotient_module S) := begin apply @set_quotient.is_trunc_set_quotient, exact H end definition is_contr_quotient_module [instance] (S : property M) [is_submodule M S] (H : is_contr M) : is_contr (quotient_module S) := have is_prop M, from _, have is_prop (quotient_module S), from @set_quotient.is_trunc_set_quotient _ _ _ this, is_contr_of_inhabited_prop 0 this definition rel_of_is_contr_quotient_module (S : property M) [is_submodule M S] (H : is_contr (quotient_module S)) (m : M) : S m := rel_of_quotient_map_eq_zero S m (@eq_of_is_contr _ H _ _) definition quotient_module_isomorphism [constructor] (S : property M) [is_submodule M S] (h : Π⦃m⦄, S m → m = 0) : quotient_module S ≃lm M := (isomorphism.mk (quotient_map S) (is_equiv_ab_qg_map S h))⁻¹ˡᵐ definition quotient_module_functor [constructor] (φ : M →lm M₂) (h : Πg, g ∈ S → φ g ∈ S₂) : quotient_module S →lm quotient_module S₂ := quotient_elim (quotient_map S₂ ∘lm φ) begin intros m Hm, rexact quotient_map_eq_zero S₂ (φ m) (h m Hm) end definition quotient_module_isomorphism_quotient_module [constructor] (φ : M ≃lm M₂) (h : Πm, m ∈ S ↔ φ m ∈ S₂) : quotient_module S ≃lm quotient_module S₂ := lm_isomorphism_of_group_isomorphism (quotient_ab_group_isomorphism_quotient_ab_group (group_isomorphism_of_lm_isomorphism φ) h) (to_respect_smul (quotient_module_functor φ (λg, iff.mp (h g)))) /- specific submodules -/ definition has_scalar_image (φ : M₁ →lm M₂) ⦃m : M₂⦄ (r : R) (h : image φ m) : image φ (r • m) := begin induction h with m' p, apply image.mk (r • m'), refine to_respect_smul φ r m' ⬝ ap (λx, r • x) p, end definition is_submodule_image [instance] (φ : M₁ →lm M₂) : is_submodule M₂ (image φ) := is_submodule.mk (show 0 ∈ image (group_homomorphism_of_lm_homomorphism φ), begin apply is_subgroup.one_mem, apply is_subgroup_image end) (λ g₁ g₂ hg₁ hg₂, show g₁ + g₂ ∈ image (group_homomorphism_of_lm_homomorphism φ), begin apply @is_subgroup.mul_mem, apply is_subgroup_image, exact hg₁, exact hg₂ end) (has_scalar_image φ) /- definition image_rel [constructor] (φ : M₁ →lm M₂) : submodule_rel M₂ := submodule_rel_of_subgroup_rel (image_subgroup (group_homomorphism_of_lm_homomorphism φ)) (has_scalar_image φ) -/ definition image_trivial (φ : M₁ →lm M₂) [H : is_contr M₁] ⦃m : M₂⦄ (h : m ∈ image φ) : m = 0 := begin refine image.rec _ h, intro x p, refine p⁻¹ ⬝ ap φ _ ⬝ to_respect_zero φ, apply @is_prop.elim, apply is_trunc_succ, exact H end definition image_module [constructor] (φ : M₁ →lm M₂) : LeftModule R := submodule (image φ) -- unfortunately this is note definitionally equal: -- definition foo (φ : M₁ →lm M₂) : -- (image_module φ : AddAbGroup) = image (group_homomorphism_of_lm_homomorphism φ) := -- by reflexivity definition image_lift [constructor] (φ : M₁ →lm M₂) : M₁ →lm image_module φ := hom_lift φ (λm, image.mk m idp) definition is_surjective_image_lift (φ : M₁ →lm M₂) : is_surjective (image_lift φ) := begin refine total_image.rec _, intro m, exact image.mk m (subtype_eq idp) end variables {ψ : M₂ →lm M₃} {φ : M₁ →lm M₂} {θ : M₁ →lm M₃} {ψ' : M₂' →lm M₃'} {φ' : M₁' →lm M₂'} definition image_elim [constructor] (θ : M₁ →lm M₃) (h : Π⦃g⦄, φ g = 0 → θ g = 0) : image_module φ →lm M₃ := begin fapply homomorphism.mk, change Image (group_homomorphism_of_lm_homomorphism φ) → M₃, exact image_elim (group_homomorphism_of_lm_homomorphism θ) h, split, { exact homomorphism.struct (image_elim (group_homomorphism_of_lm_homomorphism θ) _) }, { intro r, refine @total_image.rec _ _ _ _ (λx, !is_trunc_eq) _, intro g, apply to_respect_smul } end definition image_elim_compute (h : Π⦃g⦄, φ g = 0 → θ g = 0) : image_elim θ h ∘lm image_lift φ ~ θ := begin reflexivity end -- definition image_elim_hom_lift (ψ : M →lm M₂) (h : Π⦃g⦄, φ g = 0 → θ g = 0) : -- image_elim θ h ∘lm hom_lift ψ _ ~ _ := -- begin -- reflexivity -- end definition is_contr_image_module [instance] (φ : M₁ →lm M₂) (H : is_contr M₂) : is_contr (image_module φ) := is_contr_submodule _ _ definition is_contr_image_module_of_is_contr_dom (φ : M₁ →lm M₂) (H : is_contr M₁) : is_contr (image_module φ) := is_contr.mk 0 begin have Π(x : image_module φ), is_prop (0 = x), from _, apply @total_image.rec, exact this, intro m, have h : is_contr (LeftModule.carrier M₁), from H, induction (eq_of_is_contr 0 m), apply subtype_eq, exact (to_respect_zero φ)⁻¹ end definition image_module_isomorphism [constructor] (φ : M₁ →lm M₂) (H : is_surjective φ) : image_module φ ≃lm M₂ := submodule_isomorphism _ H definition has_scalar_kernel (φ : M₁ →lm M₂) ⦃m : M₁⦄ (r : R) (p : φ m = 0) : φ (r • m) = 0 := begin refine to_respect_smul φ r m ⬝ ap (λx, r • x) p ⬝ smul_zero r, end definition lm_kernel [reducible] (φ : M₁ →lm M₂) : property M₁ := kernel (group_homomorphism_of_lm_homomorphism φ) definition is_submodule_kernel [instance] (φ : M₁ →lm M₂) : is_submodule M₁ (lm_kernel φ) := is_submodule.mk (show 0 ∈ kernel (group_homomorphism_of_lm_homomorphism φ), begin apply is_subgroup.one_mem, apply is_subgroup_kernel end) (λ g₁ g₂ hg₁ hg₂, show g₁ + g₂ ∈ kernel (group_homomorphism_of_lm_homomorphism φ), begin apply @is_subgroup.mul_mem, apply is_subgroup_kernel, exact hg₁, exact hg₂ end) (has_scalar_kernel φ) definition kernel_full (φ : M₁ →lm M₂) (H : is_contr M₂) (m : M₁) : m ∈ lm_kernel φ := !is_prop.elim definition kernel_module [reducible] (φ : M₁ →lm M₂) : LeftModule R := submodule (lm_kernel φ) definition is_contr_kernel_module [instance] (φ : M₁ →lm M₂) (H : is_contr M₁) : is_contr (kernel_module φ) := is_contr_submodule _ _ definition kernel_module_isomorphism [constructor] (φ : M₁ →lm M₂) (H : is_contr M₂) : kernel_module φ ≃lm M₁ := submodule_isomorphism _ (kernel_full φ _) definition homology_quotient_property (ψ : M₂ →lm M₃) (φ : M₁ →lm M₂) : property (kernel_module ψ) := property_submodule (lm_kernel ψ) (image (homomorphism_fn φ)) definition is_submodule_homology_property [instance] (ψ : M₂ →lm M₃) (φ : M₁ →lm M₂) : is_submodule (kernel_module ψ) (homology_quotient_property ψ φ) := (is_submodule_property_submodule _ (image φ)) definition homology (ψ : M₂ →lm M₃) (φ : M₁ →lm M₂) : LeftModule R := quotient_module (homology_quotient_property ψ φ) definition homology.mk (φ : M₁ →lm M₂) (m : M₂) (h : ψ m = 0) : homology ψ φ := quotient_map (homology_quotient_property ψ φ) ⟨m, h⟩ definition homology_eq0 {m : M₂} {hm : ψ m = 0} (h : image φ m) : homology.mk φ m hm = 0 := ab_qg_map_eq_one _ h definition homology_eq0' {m : M₂} {hm : ψ m = 0} (h : image φ m): homology.mk φ m hm = homology.mk φ 0 (to_respect_zero ψ) := ab_qg_map_eq_one _ h definition homology_eq {m n : M₂} {hm : ψ m = 0} {hn : ψ n = 0} (h : image φ (m - n)) : homology.mk φ m hm = homology.mk φ n hn := eq_of_sub_eq_zero (homology_eq0 h) definition homology_elim [constructor] (θ : M₂ →lm M) (H : Πm, θ (φ m) = 0) : homology ψ φ →lm M := quotient_elim (θ ∘lm submodule_incl _) begin intro m x, induction m with m h, esimp at *, induction x with v, exact ap θ p⁻¹ ⬝ H v -- m' end definition is_contr_homology [instance] (ψ : M₂ →lm M₃) (φ : M₁ →lm M₂) (H : is_contr M₂) : is_contr (homology ψ φ) := is_contr_quotient_module _ (is_contr_kernel_module _ _) definition homology_isomorphism [constructor] (ψ : M₂ →lm M₃) (φ : M₁ →lm M₂) (H₁ : is_contr M₁) (H₃ : is_contr M₃) : homology ψ φ ≃lm M₂ := (quotient_module_isomorphism (homology_quotient_property ψ φ) (eq_zero_of_mem_property_submodule_trivial (image_trivial _))) ⬝lm (kernel_module_isomorphism ψ _) definition homology_functor [constructor] (α₁ : M₁ →lm M₁') (α₂ : M₂ →lm M₂') (α₃ : M₃ →lm M₃') (p : hsquare ψ ψ' α₂ α₃) (q : hsquare φ φ' α₁ α₂) : homology ψ φ →lm homology ψ' φ' := begin fapply quotient_module_functor, { apply submodule_functor α₂, intro m pm, refine (p m)⁻¹ ⬝ ap α₃ pm ⬝ to_respect_zero α₃ }, { intro m pm, induction pm with m' pm', refine image.mk (α₁ m') ((q m')⁻¹ ⬝ _), exact ap α₂ pm' } end definition homology_isomorphism_homology [constructor] (α₁ : M₁ ≃lm M₁') (α₂ : M₂ ≃lm M₂') (α₃ : M₃ ≃lm M₃') (p : hsquare ψ ψ' α₂ α₃) (q : hsquare φ φ' α₁ α₂) : homology ψ φ ≃lm homology ψ' φ' := begin fapply quotient_module_isomorphism_quotient_module, { fapply submodule_isomorphism_submodule α₂, intro m, exact iff.intro (λpm, (p m)⁻¹ ⬝ ap α₃ pm ⬝ to_respect_zero α₃) (λpm, inj (equiv_of_isomorphism α₃) (p m ⬝ pm ⬝ (to_respect_zero α₃)⁻¹)) }, { intro m, apply iff.intro, { intro pm, induction pm with m' pm', refine image.mk (α₁ m') ((q m')⁻¹ ⬝ _), exact ap α₂ pm' }, { intro pm, induction pm with m' pm', refine image.mk (α₁⁻¹ˡᵐ m') _, refine (hvinverse' (equiv_of_isomorphism α₁) (equiv_of_isomorphism α₂) q m')⁻¹ ⬝ _, exact ap α₂⁻¹ˡᵐ pm' ⬝ to_left_inv (equiv_of_isomorphism α₂) m.1 }} end definition ker_in_im_of_is_contr_homology (ψ : M₂ →lm M₃) {φ : M₁ →lm M₂} (H₁ : is_contr (homology ψ φ)) {m : M₂} (p : ψ m = 0) : image φ m := rel_of_is_contr_quotient_module _ H₁ ⟨m, p⟩ definition is_embedding_of_is_contr_homology_of_constant {ψ : M₂ →lm M₃} (φ : M₁ →lm M₂) (H₁ : is_contr (homology ψ φ)) (H₂ : Πm, φ m = 0) : is_embedding ψ := begin apply to_is_embedding_homomorphism (group_homomorphism_of_lm_homomorphism ψ), intro m p, note H := rel_of_is_contr_quotient_module _ H₁ ⟨m, p⟩, induction H with n q, exact q⁻¹ ⬝ H₂ n end definition is_embedding_of_is_contr_homology_of_is_contr {ψ : M₂ →lm M₃} (φ : M₁ →lm M₂) (H₁ : is_contr (homology ψ φ)) (H₂ : is_contr M₁) : is_embedding ψ := is_embedding_of_is_contr_homology_of_constant φ H₁ (λm, ap φ (@eq_of_is_contr _ H₂ _ _) ⬝ respect_zero φ) definition is_surjective_of_is_contr_homology_of_constant (ψ : M₂ →lm M₃) {φ : M₁ →lm M₂} (H₁ : is_contr (homology ψ φ)) (H₂ : Πm, ψ m = 0) : is_surjective φ := λm, ker_in_im_of_is_contr_homology ψ H₁ (H₂ m) definition is_surjective_of_is_contr_homology_of_is_contr (ψ : M₂ →lm M₃) {φ : M₁ →lm M₂} (H₁ : is_contr (homology ψ φ)) (H₂ : is_contr M₃) : is_surjective φ := is_surjective_of_is_contr_homology_of_constant ψ H₁ (λm, @eq_of_is_contr _ H₂ _ _) definition homology_isomorphism_kernel_module (ψ : M₂ →lm M₃) (φ : M₁ →lm M₂) (H : Πm, image φ m → m = 0) : homology ψ φ ≃lm kernel_module ψ := begin apply quotient_module_isomorphism, intro m h, apply subtype_eq, apply H, exact h end definition cokernel_module (φ : M₁ →lm M₂) : LeftModule R := quotient_module (image φ) definition homology_isomorphism_cokernel_module (ψ : M₂ →lm M₃) (φ : M₁ →lm M₂) (H : Πm, ψ m = 0) : homology ψ φ ≃lm cokernel_module φ := quotient_module_isomorphism_quotient_module (submodule_isomorphism _ H) begin intro m, reflexivity end open chain_complex fin nat definition LES_of_SESs {N : succ_str} (A B C : N → LeftModule.{_ u} R) (φ : Πn, A n →lm B n) (ses : Πn : N, short_exact_mod (cokernel_module (φ (succ_str.S n))) (C n) (kernel_module (φ n))) : module_chain_complex.{_ _ u} R (stratified N 2) := begin fapply module_chain_complex.mk, { intro x, induction x with n k, induction k with k H, do 3 (cases k with k; rotate 1), { /-k≥3-/ exfalso, apply lt_le_antisymm H, apply le_add_left}, { /-k=0-/ exact B n }, { /-k=1-/ exact A n }, { /-k=2-/ exact C n }}, { intro x, induction x with n k, induction k with k H, do 3 (cases k with k; rotate 1), { /-k≥3-/ exfalso, apply lt_le_antisymm H, apply le_add_left}, { /-k=0-/ exact φ n }, { /-k=1-/ exact submodule_incl _ ∘lm short_exact_mod.g (ses n) }, { /-k=2-/ change B (succ_str.S n) →lm C n, exact short_exact_mod.f (ses n) ∘lm !quotient_map }}, { intros x m, induction x with n k, induction k with k H, do 3 (cases k with k; rotate 1), { exfalso, apply lt_le_antisymm H, apply le_add_left}, { exact (short_exact_mod.g (ses n) m).2 }, { note h := is_short_exact.im_in_ker (short_exact_mod.h (ses n)) (quotient_map _ m), exact ap pr1 h }, { refine _ ⬝ to_respect_zero (short_exact_mod.f (ses n)), rexact ap (short_exact_mod.f (ses n)) (quotient_map_eq_zero _ _ (image.mk m idp)) }} end open prod definition LES_of_SESs_zero {N : succ_str} {A B C : N → LeftModule.{_ u} R} (φ : Πn, A n →lm B n) (ses : Πn : N, short_exact_mod (cokernel_module (φ (succ_str.S n))) (C n) (kernel_module (φ n))) (n : N) : LES_of_SESs A B C φ ses (n, 0) ≃lm B n := by reflexivity definition LES_of_SESs_one {N : succ_str} {A B C : N → LeftModule.{_ u} R} (φ : Πn, A n →lm B n) (ses : Πn : N, short_exact_mod (cokernel_module (φ (succ_str.S n))) (C n) (kernel_module (φ n))) (n : N) : LES_of_SESs A B C φ ses (n, 1) ≃lm A n := by reflexivity definition LES_of_SESs_two {N : succ_str} {A B C : N → LeftModule.{_ u} R} (φ : Πn, A n →lm B n) (ses : Πn : N, short_exact_mod (cokernel_module (φ (succ_str.S n))) (C n) (kernel_module (φ n))) (n : N) : LES_of_SESs A B C φ ses (n, 2) ≃lm C n := by reflexivity definition is_exact_LES_of_SESs {N : succ_str} {A B C : N → LeftModule.{_ u} R} (φ : Πn, A n →lm B n) (ses : Πn : N, short_exact_mod (cokernel_module (φ (succ_str.S n))) (C n) (kernel_module (φ n))) : is_exact_m (LES_of_SESs A B C φ ses) := begin intros x m p, induction x with n k, induction k with k H, do 3 (cases k with k; rotate 1), { exfalso, apply lt_le_antisymm H, apply le_add_left}, { induction is_short_exact.is_surj (short_exact_mod.h (ses n)) ⟨m, p⟩ with m' q, exact image.mk m' (ap pr1 q) }, { induction is_short_exact.ker_in_im (short_exact_mod.h (ses n)) m (subtype_eq p) with m' q, induction m' using set_quotient.rec_prop with m', exact image.mk m' q }, { apply rel_of_quotient_map_eq_zero (image (φ (succ_str.S n))) m, apply @is_injective_of_is_embedding _ _ _ (is_short_exact.is_emb (short_exact_mod.h (ses n))), exact p ⬝ (to_respect_zero (short_exact_mod.f (ses n)))⁻¹ } end -- remove: -- definition homology.rec (P : homology ψ φ → Type) -- [H : Πx, is_set (P x)] (h₀ : Π(m : M₂) (h : ψ m = 0), P (homology.mk m h)) -- (h₁ : Π(m : M₂) (h : ψ m = 0) (k : image φ m), h₀ m h =[homology_eq0' k] h₀ 0 (to_respect_zero ψ)) -- : Πx, P x := -- begin -- refine @set_quotient.rec _ _ _ H _ _, -- { intro v, induction v with m h, exact h₀ m h }, -- { intro v v', induction v with m hm, induction v' with n hn, -- intro h, -- note x := h₁ (m - n) _ h, -- esimp, -- exact change_path _ _, -- } -- end -- definition quotient.rec (P : quotient_group N → Type) -- [H : Πx, is_set (P x)] (h₀ : Π(g : G), P (qg_map N g)) -- -- (h₀_mul : Π(g h : G), h₀ (g * h)) -- (h₁ : Π(g : G) (h : N g), h₀ g =[qg_map_eq_one g h] h₀ 1) -- : Πx, P x := -- begin -- refine @set_quotient.rec _ _ _ H _ _, -- { intro g, exact h₀ g }, -- { intro g g' h, -- note x := h₁ (g * g'⁻¹) h, -- } -- -- { intro v, induction }, -- -- { intro v v', induction v with m hm, induction v' with n hn, -- -- intro h, -- -- note x := h₁ (m - n) _ h, -- -- esimp, -- -- exact change_path _ _, -- -- } -- end end left_module