import ..algebra.spectral_sequence ..spectrum.trunc .basic open eq spectrum trunc is_trunc pointed int EM algebra left_module fiber lift equiv is_equiv cohomology group sigma unit is_conn prod set_option pp.binder_types true /- Eilenberg MacLane spaces are the fibers of the Postnikov system of a type -/ namespace pointed definition postnikov_map [constructor] (A : Type*) (n : ℕ₋₂) : ptrunc (n.+1) A →* ptrunc n A := ptrunc.elim (n.+1) (ptr n A) definition ptrunc_functor_postnikov_map {A B : Type*} (n : ℕ₋₂) (f : A →* B) : ptrunc_functor n f ∘* postnikov_map A n ~* ptrunc.elim (n.+1) (!ptr ∘* f) := begin fapply phomotopy.mk, { intro x, induction x with a, reflexivity }, { reflexivity } end section open nat group definition pfiber_postnikov_map (A : Type*) (n : ℕ) : pfiber (postnikov_map A n) ≃* EM_type A (n+1) := begin symmetry, apply EM_type_pequiv, { symmetry, refine _ ⬝g ghomotopy_group_ptrunc (n+1) A, exact chain_complex.LES_isomorphism_of_trivial_cod _ _ (trivial_homotopy_group_of_is_trunc _ (self_lt_succ n)) (trivial_homotopy_group_of_is_trunc _ (le_succ _)) }, { apply is_conn_fun_trunc_elim, apply is_conn_fun_tr }, { have is_trunc (n+1) (ptrunc n.+1 A), from !is_trunc_trunc, have is_trunc ((n+1).+1) (ptrunc n A), by do 2 apply is_trunc_succ, apply is_trunc_trunc, exact is_trunc_pfiber _ _ _ _ } end end definition postnikov_map_natural {A B : Type*} (f : A →* B) (n : ℕ₋₂) : psquare (postnikov_map A n) (postnikov_map B n) (ptrunc_functor (n.+1) f) (ptrunc_functor n f) := !ptrunc_functor_postnikov_map ⬝* !ptrunc_elim_ptrunc_functor⁻¹* definition is_equiv_postnikov_map (A : Type*) {n k : ℕ₋₂} [HA : is_trunc k A] (H : k ≤ n) : is_equiv (postnikov_map A n) := begin apply is_equiv_of_equiv_of_homotopy (ptrunc_pequiv_ptrunc_of_is_trunc (trunc_index.le.step H) H HA), intro x, induction x, reflexivity end definition encode_ap1_gen_tr (n : ℕ₋₂) {A : Type*} {a a' : A} (p : a = a') : trunc.encode (ap1_gen tr idp idp p) = tr p :> trunc n (a = a') := by induction p; reflexivity definition ap1_postnikov_map (A : Type*) (n : ℕ₋₂) : psquare (Ω→ (postnikov_map A (n.+1))) (postnikov_map (Ω A) n) (loop_ptrunc_pequiv (n.+1) A) (loop_ptrunc_pequiv n A) := have psquare (postnikov_map (Ω A) n) (Ω→ (postnikov_map A (n.+1))) (loop_ptrunc_pequiv (n.+1) A)⁻¹ᵉ* (loop_ptrunc_pequiv n A)⁻¹ᵉ*, begin refine _ ⬝* !ap1_ptrunc_elim⁻¹*, apply pinv_left_phomotopy_of_phomotopy, fapply phomotopy.mk, { intro x, induction x with p, exact !encode_ap1_gen_tr⁻¹ }, { reflexivity } end, this⁻¹ᵛ* end pointed open pointed namespace spectrum definition postnikov_smap [constructor] (X : spectrum) (k : ℤ) : strunc k X →ₛ strunc (k - 1) X := strunc_elim (str (k - 1) X) (is_strunc_strunc_pred X k) definition postnikov_map_pred (A : Type*) (n : ℕ₋₂) : ptrunc n A →* ptrunc (trunc_index.pred n) A := begin cases n with n, exact !pid, exact postnikov_map A n end definition pfiber_postnikov_map_pred (A : Type*) (n : ℕ) : pfiber (postnikov_map_pred A n) ≃* EM_type A n := begin cases n with n, apply pfiber_pequiv_of_is_contr, apply is_contr_ptrunc_minus_one, exact pfiber_postnikov_map A n end definition pfiber_postnikov_map_pred' (A : spectrum) (n k l : ℤ) (p : n + k = l) : pfiber (postnikov_map_pred (A k) (maxm2 l)) ≃* EM_spectrum (πₛ[n] A) l := begin cases l with l l, { refine pfiber_postnikov_map_pred (A k) l ⬝e* _, exact EM_type_pequiv_EM A p }, { refine pequiv_of_is_contr _ _ _ _, apply is_contr_pfiber_pid, apply is_contr_EM_spectrum_neg } end definition psquare_postnikov_map_ptrunc_elim (A : Type*) {n k l : ℕ₋₂} (H : is_trunc n (ptrunc k A)) (p : n = l.+1) (q : k = l) : psquare (ptrunc.elim n (ptr k A)) (postnikov_map A l) (ptrunc_change_index p A) (ptrunc_change_index q A) := begin induction q, cases p, refine _ ⬝pv* pvrfl, apply ptrunc_elim_phomotopy2, reflexivity end definition postnikov_smap_postnikov_map (A : spectrum) (n k l : ℤ) (p : n + k = l) : psquare (postnikov_smap A n k) (postnikov_map_pred (A k) (maxm2 l)) (ptrunc_maxm2_change_int p (A k)) (ptrunc_maxm2_pred (A k) (ap pred p⁻¹ ⬝ add.right_comm n k (- 1))) := begin cases l with l, { cases l with l, apply phomotopy_of_is_contr_cod_pmap, apply is_contr_ptrunc_minus_one, refine psquare_postnikov_map_ptrunc_elim (A k) _ _ _ ⬝hp* _, exact ap maxm2 (add.right_comm n (- 1) k ⬝ ap pred p ⬝ !pred_succ), apply ptrunc_maxm2_pred_nat }, { apply phomotopy_of_is_contr_cod_pmap, apply is_trunc_trunc } end definition sfiber_postnikov_smap_pequiv (A : spectrum) (n : ℤ) (k : ℤ) : sfiber (postnikov_smap A n) k ≃* ssuspn n (EM_spectrum (πₛ[n] A)) k := proof pfiber_pequiv_of_square _ _ (postnikov_smap_postnikov_map A n k (n + k) idp) ⬝e* pfiber_postnikov_map_pred' A n k _ idp ⬝e* pequiv_ap (EM_spectrum (πₛ[n] A)) (add.comm n k) qed open exact_couple section atiyah_hirzebruch parameters {X : Type*} (Y : X → spectrum) (s₀ : ℤ) (H : Πx, is_strunc s₀ (Y x)) include H definition atiyah_hirzebruch_exact_couple : exact_couple rℤ Z2 := @exact_couple_sequence (λs, spi X (λx, strunc s (Y x))) (λs, spi_compose_left (λx, postnikov_smap (Y x) s)) -- include H definition atiyah_hirzebruch_ub ⦃s n : ℤ⦄ (Hs : s ≤ n - 1) : is_contr (πₛ[n] (spi X (λx, strunc s (Y x)))) := begin refine trivial_shomotopy_group_of_is_strunc _ _ (lt_of_le_sub_one Hs), apply is_strunc_spi, intro x, exact is_strunc_strunc _ _ end definition atiyah_hirzebruch_lb' ⦃s n : ℤ⦄ (Hs : s ≥ s₀ + 1) : is_equiv (spi_compose_left (λx, postnikov_smap (Y x) s) n) := begin refine is_equiv_of_equiv_of_homotopy (ppi_pequiv_right (λx, ptrunc_pequiv_ptrunc_of_is_trunc _ _ (H x n))) _, { intro x, apply maxm2_monotone, apply add_le_add_right, exact le.trans !le_add_one Hs }, { intro x, apply maxm2_monotone, apply add_le_add_right, exact le_sub_one_of_lt Hs }, intro f, apply eq_of_phomotopy, apply pmap_compose_ppi_phomotopy_left, intro x, fapply phomotopy.mk, { refine @trunc.rec _ _ _ _ _, { intro x, apply is_trunc_eq, assert H3 : maxm2 (s - 1 + n) ≤ (maxm2 (s + n)).+1, { refine trunc_index.le_succ (maxm2_monotone (le.trans (le_of_eq !add.right_comm) !sub_one_le)) }, exact @is_trunc_of_le _ _ _ H3 !is_trunc_trunc }, intro a, reflexivity }, reflexivity end definition atiyah_hirzebruch_lb ⦃s n : ℤ⦄ (Hs : s ≥ s₀ + 1) : is_equiv (πₛ→[n] (spi_compose_left (λx, postnikov_smap (Y x) s))) := begin apply is_equiv_homotopy_group_functor, apply atiyah_hirzebruch_lb', exact Hs end definition is_bounded_atiyah_hirzebruch : is_bounded atiyah_hirzebruch_exact_couple := is_bounded_sequence _ (λn, s₀) (λn, n - 1) atiyah_hirzebruch_lb atiyah_hirzebruch_ub definition atiyah_hirzebruch_convergence1 : (λn s, πₛ[n] (sfiber (spi_compose_left (λx, postnikov_smap (Y x) s)))) ⟹ᵍ (λn, πₛ[n] (spi X (λx, strunc s₀ (Y x)))) := convergent_exact_couple_sequence _ (λn, s₀) (λn, n - 1) atiyah_hirzebruch_lb atiyah_hirzebruch_ub definition atiyah_hirzebruch_convergence2 : (λn s, opH^-(n-s)[(x : X), πₛ[s] (Y x)]) ⟹ᵍ (λn, pH^n[(x : X), Y x]) := convergent_exact_couple_g_isomorphism (convergent_exact_couple_negate_abutment atiyah_hirzebruch_convergence1) begin intro n s, refine _ ⬝g (parametrized_cohomology_isomorphism_shomotopy_group_spi _ idp)⁻¹ᵍ, refine _ ⬝g !shomotopy_group_ssuspn, apply shomotopy_group_isomorphism_of_pequiv n, intro k, refine !pfiber_pppi_compose_left ⬝e* _, exact ppi_pequiv_right (λx, sfiber_postnikov_smap_pequiv (Y x) s k) end begin intro n, refine _ ⬝g (parametrized_cohomology_isomorphism_shomotopy_group_spi _ !neg_neg)⁻¹ᵍ, apply shomotopy_group_isomorphism_of_pequiv, intro k, exact ppi_pequiv_right (λx, ptrunc_pequiv (maxm2 (s₀ + k)) (Y x k)), end open prod.ops definition atiyah_hirzebruch_base_change [constructor] : agℤ ×ag agℤ ≃g agℤ ×ag agℤ := begin fapply group.isomorphism.mk, { fapply group.homomorphism.mk, exact (λpq, (-(pq.1 + pq.2), -pq.2)), intro pq pq', induction pq with p q, induction pq' with p' q', esimp, exact prod_eq (ap neg !add.comm4 ⬝ !neg_add) !neg_add }, { fapply adjointify, { exact (λns, (ns.2 - ns.1, -ns.2)) }, { intro ns, esimp, exact prod_eq (ap neg (!add.comm ⬝ !neg_add_cancel_left) ⬝ !neg_neg) !neg_neg }, { intro pq, esimp, exact prod_eq (ap (λx, _ + x) !neg_neg ⬝ !add.comm ⬝ !add_neg_cancel_right) !neg_neg }} end definition atiyah_hirzebruch_convergence : (λp q, opH^p[(x : X), πₛ[-q] (Y x)]) ⟹ᵍ (λn, pH^n[(x : X), Y x]) := begin note z := convergent_exact_couple_reindex atiyah_hirzebruch_convergence2 atiyah_hirzebruch_base_change, refine convergent_exact_couple_g_isomorphism z _ (by intro n; reflexivity), intro p q, apply parametrized_cohomology_change_int, esimp, refine !neg_neg_sub_neg ⬝ !add_neg_cancel_right end definition atiyah_hirzebruch_spectral_sequence : convergent_spectral_sequence_g (λp q, opH^p[(x : X), πₛ[-q] (Y x)]) (λn, pH^n[(x : X), Y x]) := begin apply convergent_spectral_sequence_of_exact_couple atiyah_hirzebruch_convergence, { intro n, exact add.comm (s₀ - -n) (-s₀) ⬝ !neg_add_cancel_left ⬝ !neg_neg }, { reflexivity } end /- to unfold a field of atiyah_hirzebruch_spectral_sequence: esimp [atiyah_hirzebruch_spectral_sequence, convergent_spectral_sequence_of_exact_couple, atiyah_hirzebruch_convergence, convergent_exact_couple_g_isomorphism, convergent_exact_couple_isomorphism, convergent_exact_couple_reindex, atiyah_hirzebruch_convergence2, convergent_exact_couple_negate_abutment, atiyah_hirzebruch_convergence1, convergent_exact_couple_sequence], -/ definition AHSS_deg_d (r : ℕ) : convergent_spectral_sequence.deg_d atiyah_hirzebruch_spectral_sequence r = (r + 2, -(r + 1)) := by reflexivity definition AHSS_lb (n : ℤ) : convergent_spectral_sequence.lb atiyah_hirzebruch_spectral_sequence n = -s₀ := by reflexivity -- open nat -- definition AHSS_ub (n : ℤ) : -- is_built_from.n₀ (convergent_spectral_sequence.HDinf atiyah_hirzebruch_spectral_sequence n) = -- max0 (s₀ + n) + 1 := -- begin -- -- refine refl (max (max0 (- - - -s₀ - (-(- -s₀ - -(s₀ - -n + -s₀) + - - -s₀) - 1))) -- -- (max0 (max (s₀ + 1 - - - - -s₀) (s₀ + 1 - - - - -s₀)))) ⬝ _, -- -- exact ap011 max (ap max0 (ap011 add (!neg_neg ⬝ !neg_neg) _)) _ ⬝ _, -- exact sorry -- end end atiyah_hirzebruch section unreduced_atiyah_hirzebruch definition unreduced_atiyah_hirzebruch_convergence {X : Type} (Y : X → spectrum) (s₀ : ℤ) (H : Πx, is_strunc s₀ (Y x)) : (λp q, uopH^p[(x : X), πₛ[-q] (Y x)]) ⟹ᵍ (λn, upH^n[(x : X), Y x]) := convergent_exact_couple_g_isomorphism (@atiyah_hirzebruch_convergence X₊ (add_point_spectrum Y) s₀ (is_strunc_add_point_spectrum H)) begin intro p q, refine _ ⬝g !uopH_isomorphism_opH⁻¹ᵍ, apply ordinary_parametrized_cohomology_isomorphism_right, intro x, apply shomotopy_group_add_point_spectrum end begin intro n, reflexivity end definition unreduced_atiyah_hirzebruch_spectral_sequence {X : Type} (Y : X → spectrum) (s₀ : ℤ) (H : Πx, is_strunc s₀ (Y x)) : convergent_spectral_sequence_g (λp q, uopH^p[(x : X), πₛ[-q] (Y x)]) (λn, upH^n[(x : X), Y x]) := begin apply convergent_spectral_sequence_of_exact_couple (unreduced_atiyah_hirzebruch_convergence Y s₀ H), { intro n, exact add.comm (s₀ - -n) (-s₀) ⬝ !neg_add_cancel_left ⬝ !neg_neg }, { reflexivity } end end unreduced_atiyah_hirzebruch section serre universe variable u variables {X B : Type.{u}} (b₀ : B) (F : B → Type) (f : X → B) (Y : spectrum) (s₀ : ℤ) (H : is_strunc s₀ Y) include H definition serre_convergence : (λp q, uopH^p[(b : B), uH^q[F b, Y]]) ⟹ᵍ (λn, uH^n[Σ(b : B), F b, Y]) := proof convergent_exact_couple_g_isomorphism (unreduced_atiyah_hirzebruch_convergence (λx, sp_ucotensor (F x) Y) s₀ (λx, is_strunc_sp_ucotensor s₀ (F x) H)) begin intro p q, refine unreduced_ordinary_parametrized_cohomology_isomorphism_right _ p, intro x, exact (unreduced_cohomology_isomorphism_shomotopy_group_sp_ucotensor _ _ !neg_neg)⁻¹ᵍ end begin intro n, refine unreduced_parametrized_cohomology_isomorphism_shomotopy_group_supi _ !neg_neg ⬝g _, refine _ ⬝g (unreduced_cohomology_isomorphism_shomotopy_group_sp_ucotensor _ _ !neg_neg)⁻¹ᵍ, apply shomotopy_group_isomorphism_of_pequiv, intro k, exact (sigma_pumap F (Y k))⁻¹ᵉ* end qed definition serre_spectral_sequence : convergent_spectral_sequence_g (λp q, uopH^p[(b : B), uH^q[F b, Y]]) (λn, uH^n[Σ(b : B), F b, Y]) := begin apply convergent_spectral_sequence_of_exact_couple (serre_convergence F Y s₀ H), { intro n, exact add.comm (s₀ - -n) (-s₀) ⬝ !neg_add_cancel_left ⬝ !neg_neg }, { reflexivity } end definition serre_convergence_map : (λp q, uopH^p[(b : B), uH^q[fiber f b, Y]]) ⟹ᵍ (λn, uH^n[X, Y]) := proof convergent_exact_couple_g_isomorphism (serre_convergence (fiber f) Y s₀ H) begin intro p q, reflexivity end begin intro n, apply unreduced_cohomology_isomorphism, exact !sigma_fiber_equiv⁻¹ᵉ end qed definition serre_spectral_sequence_map : convergent_spectral_sequence_g (λp q, uopH^p[(b : B), uH^q[fiber f b, Y]]) (λn, uH^n[X, Y]) := begin apply convergent_spectral_sequence_of_exact_couple (serre_convergence_map f Y s₀ H), { intro n, exact add.comm (s₀ - -n) (-s₀) ⬝ !neg_add_cancel_left ⬝ !neg_neg }, { reflexivity } end definition serre_convergence_of_is_conn (H2 : is_conn 1 B) : (λp q, uoH^p[B, uH^q[F b₀, Y]]) ⟹ᵍ (λn, uH^n[Σ(b : B), F b, Y]) := proof convergent_exact_couple_g_isomorphism (serre_convergence F Y s₀ H) begin intro p q, exact @uopH_isomorphism_uoH_of_is_conn (pointed.MK B b₀) _ _ H2 end begin intro n, reflexivity end qed definition serre_spectral_sequence_of_is_conn (H2 : is_conn 1 B) : convergent_spectral_sequence_g (λp q, uoH^p[B, uH^q[F b₀, Y]]) (λn, uH^n[Σ(b : B), F b, Y]) := begin apply convergent_spectral_sequence_of_exact_couple (serre_convergence_of_is_conn b₀ F Y s₀ H H2), { intro n, exact add.comm (s₀ - -n) (-s₀) ⬝ !neg_add_cancel_left ⬝ !neg_neg }, { reflexivity } end definition serre_convergence_map_of_is_conn (H2 : is_conn 1 B) : (λp q, uoH^p[B, uH^q[fiber f b₀, Y]]) ⟹ᵍ (λn, uH^n[X, Y]) := proof convergent_exact_couple_g_isomorphism (serre_convergence_of_is_conn b₀ (fiber f) Y s₀ H H2) begin intro p q, reflexivity end begin intro n, apply unreduced_cohomology_isomorphism, exact !sigma_fiber_equiv⁻¹ᵉ end qed definition serre_spectral_sequence_map_of_is_conn' (H2 : is_conn 1 B) : convergent_spectral_sequence_g (λp q, uoH^p[B, uH^q[fiber f b₀, Y]]) (λn, uH^n[X, Y]) := begin apply convergent_spectral_sequence_of_exact_couple (serre_convergence_map_of_is_conn b₀ f Y s₀ H H2), { intro n, exact add.comm (s₀ - -n) (-s₀) ⬝ !neg_add_cancel_left ⬝ !neg_neg }, { reflexivity } end definition serre_spectral_sequence_map_of_is_conn (H2 : is_conn 1 B) : convergent_spectral_sequence_g (λp q, uoH^p[B, uH^q[fiber f b₀, Y]]) (λn, uH^n[X, Y]) := ⦃convergent_spectral_sequence, deg_d := λ(r : ℕ), (r + 2, -(r + 1)), lb := λx, -s₀, serre_spectral_sequence_map_of_is_conn' b₀ f Y s₀ H H2⦄ omit H definition is_normal_serre_spectral_sequence_map_of_is_conn (H' : is_strunc 0 Y) (H2 : is_conn 1 B) : spectral_sequence.is_normal (serre_spectral_sequence_map_of_is_conn b₀ f Y 0 H' H2) := begin apply spectral_sequence.is_normal.mk, { intro p q Hp, exact is_contr_ordinary_cohomology_of_neg _ _ Hp }, { intro p q Hp, apply is_contr_ordinary_cohomology, apply is_contr_cohomology_of_is_contr_spectrum, exact is_contr_of_is_strunc _ _ H' Hp }, { intro r, reflexivity }, end end serre end spectrum