/- Graded (left-) R-modules for a ring R. -/ -- Author: Floris van Doorn import .left_module .direct_sum .submodule --..heq open is_trunc algebra eq left_module pointed function equiv is_equiv prod group sigma sigma.ops nat trunc_index namespace left_module definition graded [reducible] (str : Type) (I : Type) : Type := I → str definition graded_module [reducible] (R : Ring) : Type → Type := graded (LeftModule R) -- TODO: We can (probably) make I a type everywhere variables {R : Ring} {I : Set} {M M₁ M₂ M₃ : graded_module R I} /- morphisms between graded modules. The definition is unconventional in two ways: (1) The degree is determined by an endofunction instead of a element of I (and in this case we don't need to assume that I is a group). The "standard" degree i corresponds to the endofunction which is addition with i on the right. However, this is more flexible. For example, the composition of two graded module homomorphisms φ₂ and φ₁ with degrees i₂ and i₁ has type M₁ i → M₂ ((i + i₁) + i₂). However, a homomorphism with degree i₁ + i₂ must have type M₁ i → M₂ (i + (i₁ + i₂)), which means that we need to insert a transport. With endofunctions this is not a problem: λi, (i + i₁) + i₂ is a perfectly fine degree of a map (2) Since we cannot eliminate all possible transports, we don't define a homomorphism as function M₁ i →lm M₂ (i + deg f) or M₁ i →lm M₂ (deg f i) but as a function taking a path as argument. Specifically, for every path deg f i = j we get a function M₁ i → M₂ j. (3) Note: we do assume that I is a set. This is not strictly necessary, but it simplifies things -/ definition graded_hom_of_deg (d : I ≃ I) (M₁ M₂ : graded_module R I) : Type := Π⦃i j : I⦄ (p : d i = j), M₁ i →lm M₂ j definition gmd_constant [constructor] (d : I ≃ I) (M₁ M₂ : graded_module R I) : graded_hom_of_deg d M₁ M₂ := λi j p, lm_constant (M₁ i) (M₂ j) definition gmd0 [constructor] {d : I ≃ I} {M₁ M₂ : graded_module R I} : graded_hom_of_deg d M₁ M₂ := gmd_constant d M₁ M₂ structure graded_hom (M₁ M₂ : graded_module R I) : Type := mk' :: (d : I ≃ I) (fn' : graded_hom_of_deg d M₁ M₂) notation M₁ ` →gm ` M₂ := graded_hom M₁ M₂ abbreviation deg [unfold 5] := @graded_hom.d postfix ` ↘`:max := graded_hom.fn' -- there is probably a better character for this? Maybe ↷? definition graded_hom_fn [reducible] [unfold 5] [coercion] (f : M₁ →gm M₂) (i : I) : M₁ i →lm M₂ (deg f i) := f ↘ idp definition graded_hom_fn_out [reducible] [unfold 5] (f : M₁ →gm M₂) (i : I) : M₁ ((deg f)⁻¹ i) →lm M₂ i := f ↘ (to_right_inv (deg f) i) infix ` ← `:max := graded_hom_fn_out -- todo: change notation -- definition graded_hom_fn_out_rec (f : M₁ →gm M₂) -- (P : Π{i j} (p : deg f i = j) (m : M₁ i) (n : M₂ j), Type) -- (H : Πi m, P (right_inv (deg f) i) m (f ← i m)) {i j : I} -- (p : deg f i = j) (m : M₁ i) (n : M₂ j) : P p m (f ↘ p m) := -- begin -- revert i j p m n, refine equiv_rect (deg f)⁻¹ᵉ _ _, intro i, -- refine eq.rec_to (right_inv (deg f) i) _, -- intro m n, exact H i m -- end -- definition graded_hom_fn_rec (f : M₁ →gm M₂) -- {P : Π{i j} (p : deg f i = j) (m : M₁ i) (n : M₂ j), Type} -- (H : Πi m, P idp m (f i m)) ⦃i j : I⦄ -- (p : deg f i = j) (m : M₁ i) : P p m (f ↘ p m) := -- begin -- induction p, apply H -- end -- definition graded_hom_fn_out_rec (f : M₁ →gm M₂) -- {P : Π{i j} (p : deg f i = j) (m : M₁ i) (n : M₂ j), Type} -- (H : Πi m, P idp m (f i m)) ⦃i : I⦄ (m : M₁ ((deg f)⁻¹ᵉ i)) : -- P (right_inv (deg f) i) m (f ← i m) := -- graded_hom_fn_rec f H (right_inv (deg f) i) m -- definition graded_hom_fn_out_rec_simple (f : M₁ →gm M₂) -- {P : Π{j} (n : M₂ j), Type} -- (H : Πi m, P (f i m)) ⦃i : I⦄ (m : M₁ ((deg f)⁻¹ᵉ i)) : -- P (f ← i m) := -- graded_hom_fn_out_rec f H m definition graded_hom.mk [constructor] (d : I ≃ I) (fn : Πi, M₁ i →lm M₂ (d i)) : M₁ →gm M₂ := graded_hom.mk' d (λi j p, homomorphism_of_eq (ap M₂ p) ∘lm fn i) definition graded_hom.mk_out [constructor] (d : I ≃ I) (fn : Πi, M₁ (d⁻¹ i) →lm M₂ i) : M₁ →gm M₂ := graded_hom.mk' d (λi j p, fn j ∘lm homomorphism_of_eq (ap M₁ (eq_inv_of_eq p))) definition graded_hom.mk_out' [constructor] (d : I ≃ I) (fn : Πi, M₁ (d i) →lm M₂ i) : M₁ →gm M₂ := graded_hom.mk' d⁻¹ᵉ (λi j p, fn j ∘lm homomorphism_of_eq (ap M₁ (eq_inv_of_eq p))) definition graded_hom.mk_out_in [constructor] (d₁ : I ≃ I) (d₂ : I ≃ I) (fn : Πi, M₁ (d₁ i) →lm M₂ (d₂ i)) : M₁ →gm M₂ := graded_hom.mk' (d₁⁻¹ᵉ ⬝e d₂) (λi j p, homomorphism_of_eq (ap M₂ p) ∘lm fn (d₁⁻¹ᵉ i) ∘lm homomorphism_of_eq (ap M₁ (to_right_inv d₁ i)⁻¹)) definition graded_hom_eq_transport (f : M₁ →gm M₂) {i j : I} (p : deg f i = j) (m : M₁ i) : f ↘ p m = transport M₂ p (f i m) := by induction p; reflexivity definition graded_hom_mk_refl (d : I ≃ I) (fn : Πi, M₁ i →lm M₂ (d i)) {i : I} (m : M₁ i) : graded_hom.mk d fn i m = fn i m := by reflexivity lemma graded_hom_mk_out'_destruct (d : I ≃ I) (fn : Πi, M₁ (d i) →lm M₂ i) {i : I} (m : M₁ (d i)) : graded_hom.mk_out' d fn ↘ (left_inv d i) m = fn i m := begin unfold [graded_hom.mk_out'], apply ap (λx, fn i (cast x m)), refine !ap_compose⁻¹ ⬝ ap02 _ _, apply is_set.elim --TODO: we can also prove this if I is not a set end lemma graded_hom_mk_out_destruct (d : I ≃ I) (fn : Πi, M₁ (d⁻¹ i) →lm M₂ i) {i : I} (m : M₁ (d⁻¹ i)) : graded_hom.mk_out d fn ↘ (right_inv d i) m = fn i m := begin rexact graded_hom_mk_out'_destruct d⁻¹ᵉ fn m end lemma graded_hom_mk_out_in_destruct (d₁ : I ≃ I) (d₂ : I ≃ I) (fn : Πi, M₁ (d₁ i) →lm M₂ (d₂ i)) {i : I} (m : M₁ (d₁ i)) : graded_hom.mk_out_in d₁ d₂ fn ↘ (ap d₂ (left_inv d₁ i)) m = fn i m := begin unfold [graded_hom.mk_out_in], rewrite [adj d₁, -ap_inv, - +ap_compose, ], refine cast_fn_cast_square fn _ _ !con.left_inv m end definition graded_hom_eq_zero {f : M₁ →gm M₂} {i j k : I} {q : deg f i = j} {p : deg f i = k} (m : M₁ i) (r : f ↘ q m = 0) : f ↘ p m = 0 := have f ↘ p m = transport M₂ (q⁻¹ ⬝ p) (f ↘ q m), begin induction p, induction q, reflexivity end, this ⬝ ap (transport M₂ (q⁻¹ ⬝ p)) r ⬝ tr_eq_of_pathover (apd (λi, 0) (q⁻¹ ⬝ p)) definition graded_hom_change_image {f : M₁ →gm M₂} {i j k : I} {m : M₂ k} (p : deg f i = k) (q : deg f j = k) (h : image (f ↘ p) m) : image (f ↘ q) m := begin have Σ(r : i = j), ap (deg f) r = p ⬝ q⁻¹, from ⟨eq_of_fn_eq_fn (deg f) (p ⬝ q⁻¹), !ap_eq_of_fn_eq_fn'⟩, induction this with r s, induction r, induction q, esimp at s, induction s, exact h end definition graded_hom_codom_rec {f : M₁ →gm M₂} {j : I} {P : Π⦃i⦄, deg f i = j → Type} {i i' : I} (p : deg f i = j) (h : P p) (q : deg f i' = j) : P q := begin have Σ(r : i = i'), ap (deg f) r = p ⬝ q⁻¹, from ⟨eq_of_fn_eq_fn (deg f) (p ⬝ q⁻¹), !ap_eq_of_fn_eq_fn'⟩, induction this with r s, induction r, induction q, esimp at s, induction s, exact h end variables {f' : M₂ →gm M₃} {f g h : M₁ →gm M₂} definition graded_hom_compose [constructor] (f' : M₂ →gm M₃) (f : M₁ →gm M₂) : M₁ →gm M₃ := graded_hom.mk' (deg f ⬝e deg f') (λi j p, f' ↘ p ∘lm f i) infixr ` ∘gm `:75 := graded_hom_compose definition graded_hom_compose_fn (f' : M₂ →gm M₃) (f : M₁ →gm M₂) (i : I) (m : M₁ i) : (f' ∘gm f) i m = f' (deg f i) (f i m) := by reflexivity definition graded_hom_compose_fn_ext (f' : M₂ →gm M₃) (f : M₁ →gm M₂) ⦃i j k : I⦄ (p : deg f i = j) (q : deg f' j = k) (r : (deg f ⬝e deg f') i = k) (s : ap (deg f') p ⬝ q = r) (m : M₁ i) : ((f' ∘gm f) ↘ r) m = (f' ↘ q) (f ↘ p m) := by induction s; induction q; induction p; reflexivity definition graded_hom_compose_fn_out (f' : M₂ →gm M₃) (f : M₁ →gm M₂) (i : I) (m : M₁ ((deg f ⬝e deg f')⁻¹ᵉ i)) : (f' ∘gm f) ← i m = f' ← i (f ← ((deg f')⁻¹ᵉ i) m) := graded_hom_compose_fn_ext f' f _ _ _ idp m -- the following composition might be useful if you want tight control over the paths to which f and f' are applied definition graded_hom_compose_ext [constructor] (f' : M₂ →gm M₃) (f : M₁ →gm M₂) (d : Π⦃i j⦄ (p : (deg f ⬝e deg f') i = j), I) (pf : Π⦃i j⦄ (p : (deg f ⬝e deg f') i = j), deg f i = d p) (pf' : Π⦃i j⦄ (p : (deg f ⬝e deg f') i = j), deg f' (d p) = j) : M₁ →gm M₃ := graded_hom.mk' (deg f ⬝e deg f') (λi j p, (f' ↘ (pf' p)) ∘lm (f ↘ (pf p))) variable (M) definition graded_hom_id [constructor] [refl] : M →gm M := graded_hom.mk erfl (λi, lmid) variable {M} abbreviation gmid [constructor] := graded_hom_id M definition gm_constant [constructor] (M₁ M₂ : graded_module R I) (d : I ≃ I) : M₁ →gm M₂ := graded_hom.mk' d (gmd_constant d M₁ M₂) definition is_surjective_graded_hom_compose ⦃x z⦄ (f' : M₂ →gm M₃) (f : M₁ →gm M₂) (p : deg f' (deg f x) = z) (H' : Π⦃y⦄ (q : deg f' y = z), is_surjective (f' ↘ q)) (H : Π⦃y⦄ (q : deg f x = y), is_surjective (f ↘ q)) : is_surjective ((f' ∘gm f) ↘ p) := begin induction p, apply is_surjective_compose (f' (deg f x)) (f x), apply H', apply H end structure graded_iso (M₁ M₂ : graded_module R I) : Type := mk' :: (to_hom : M₁ →gm M₂) (is_equiv_to_hom : Π⦃i j⦄ (p : deg to_hom i = j), is_equiv (to_hom ↘ p)) infix ` ≃gm `:25 := graded_iso attribute graded_iso.to_hom [coercion] attribute graded_iso._trans_of_to_hom [unfold 5] definition is_equiv_graded_iso [instance] [priority 1010] (φ : M₁ ≃gm M₂) (i : I) : is_equiv (φ i) := graded_iso.is_equiv_to_hom φ idp definition isomorphism_of_graded_iso' [constructor] (φ : M₁ ≃gm M₂) {i j : I} (p : deg φ i = j) : M₁ i ≃lm M₂ j := isomorphism.mk (φ ↘ p) !graded_iso.is_equiv_to_hom definition isomorphism_of_graded_iso [constructor] (φ : M₁ ≃gm M₂) (i : I) : M₁ i ≃lm M₂ (deg φ i) := isomorphism.mk (φ i) _ definition isomorphism_of_graded_iso_out [constructor] (φ : M₁ ≃gm M₂) (i : I) : M₁ ((deg φ)⁻¹ i) ≃lm M₂ i := isomorphism_of_graded_iso' φ !to_right_inv protected definition graded_iso.mk [constructor] (d : I ≃ I) (φ : Πi, M₁ i ≃lm M₂ (d i)) : M₁ ≃gm M₂ := begin apply graded_iso.mk' (graded_hom.mk d φ), intro i j p, induction p, exact to_is_equiv (equiv_of_isomorphism (φ i)), end protected definition graded_iso.mk_out [constructor] (d : I ≃ I) (φ : Πi, M₁ (d⁻¹ i) ≃lm M₂ i) : M₁ ≃gm M₂ := begin apply graded_iso.mk' (graded_hom.mk_out d φ), intro i j p, esimp, exact @is_equiv_compose _ _ _ _ _ !is_equiv_cast _, end definition graded_iso_of_eq [constructor] {M₁ M₂ : graded_module R I} (p : M₁ ~ M₂) : M₁ ≃gm M₂ := graded_iso.mk erfl (λi, isomorphism_of_eq (p i)) -- definition to_gminv [constructor] (φ : M₁ ≃gm M₂) : M₂ →gm M₁ := -- graded_hom.mk_out (deg φ)⁻¹ᵉ -- abstract begin -- intro i, apply isomorphism.to_hom, symmetry, -- apply isomorphism_of_graded_iso φ -- end end variable (M) definition graded_iso.refl [refl] [constructor] : M ≃gm M := graded_iso.mk equiv.rfl (λi, isomorphism.rfl) variable {M} definition graded_iso.rfl [refl] [constructor] : M ≃gm M := graded_iso.refl M definition graded_iso.symm [symm] [constructor] (φ : M₁ ≃gm M₂) : M₂ ≃gm M₁ := graded_iso.mk_out (deg φ)⁻¹ᵉ (λi, (isomorphism_of_graded_iso φ i)⁻¹ˡᵐ) definition graded_iso.trans [trans] [constructor] (φ : M₁ ≃gm M₂) (ψ : M₂ ≃gm M₃) : M₁ ≃gm M₃ := graded_iso.mk (deg φ ⬝e deg ψ) (λi, isomorphism_of_graded_iso φ i ⬝lm isomorphism_of_graded_iso ψ (deg φ i)) definition graded_iso.eq_trans [trans] [constructor] {M₁ M₂ M₃ : graded_module R I} (φ : M₁ ~ M₂) (ψ : M₂ ≃gm M₃) : M₁ ≃gm M₃ := proof graded_iso.trans (graded_iso_of_eq φ) ψ qed definition graded_iso.trans_eq [trans] [constructor] {M₁ M₂ M₃ : graded_module R I} (φ : M₁ ≃gm M₂) (ψ : M₂ ~ M₃) : M₁ ≃gm M₃ := graded_iso.trans φ (graded_iso_of_eq ψ) postfix `⁻¹ᵉᵍᵐ`:(max + 1) := graded_iso.symm infixl ` ⬝egm `:75 := graded_iso.trans infixl ` ⬝egmp `:75 := graded_iso.trans_eq infixl ` ⬝epgm `:75 := graded_iso.eq_trans definition graded_hom_of_eq [constructor] {M₁ M₂ : graded_module R I} (p : M₁ ~ M₂) : M₁ →gm M₂ := proof graded_iso_of_eq p qed definition fooff {I : Set} (P : I → Type) {i j : I} (M : P i) (N : P j) := unit notation M ` ==[`:50 P:0 `] `:0 N:50 := fooff P M N definition graded_homotopy (f g : M₁ →gm M₂) : Type := Π⦃i j k⦄ (p : deg f i = j) (q : deg g i = k) (m : M₁ i), f ↘ p m ==[λi, M₂ i] g ↘ q m -- mk' :: (hd : deg f ~ deg g) -- (hfn : Π⦃i j : I⦄ (pf : deg f i = j) (pg : deg g i = j), f ↘ pf ~ g ↘ pg) infix ` ~gm `:50 := graded_homotopy -- definition graded_homotopy.mk2 (hd : deg f ~ deg g) (hfn : Πi m, f i m =[hd i] g i m) : f ~gm g := -- graded_homotopy.mk' hd -- begin -- intro i j pf pg m, induction (is_set.elim (hd i ⬝ pg) pf), induction pg, esimp, -- exact graded_hom_eq_transport f (hd i) m ⬝ tr_eq_of_pathover (hfn i m), -- end definition graded_homotopy.mk (h : Πi m, f i m ==[λi, M₂ i] g i m) : f ~gm g := begin intros i j k p q m, induction q, induction p, constructor --exact h i m end -- definition graded_hom_compose_out {d₁ d₂ : I ≃ I} (f₂ : Πi, M₂ i →lm M₃ (d₂ i)) -- (f₁ : Πi, M₁ (d₁⁻¹ i) →lm M₂ i) : graded_hom.mk d₂ f₂ ∘gm graded_hom.mk_out d₁ f₁ ~gm -- graded_hom.mk_out_in d₁⁻¹ᵉ d₂ _ := -- _ -- definition graded_hom_out_in_compose_out {d₁ d₂ d₃ : I ≃ I} (f₂ : Πi, M₂ (d₂ i) →lm M₃ (d₃ i)) -- (f₁ : Πi, M₁ (d₁⁻¹ i) →lm M₂ i) : graded_hom.mk_out_in d₂ d₃ f₂ ∘gm graded_hom.mk_out d₁ f₁ ~gm -- graded_hom.mk_out_in (d₂ ⬝e d₁⁻¹ᵉ) d₃ (λi, f₂ i ∘lm (f₁ (d₂ i))) := -- begin -- apply graded_homotopy.mk, intro i m, exact sorry -- end -- definition graded_hom_out_in_rfl {d₁ d₂ : I ≃ I} (f : Πi, M₁ i →lm M₂ (d₂ i)) -- (p : Πi, d₁ i = i) : -- graded_hom.mk_out_in d₁ d₂ (λi, sorry) ~gm graded_hom.mk d₂ f := -- begin -- apply graded_homotopy.mk, intro i m, exact sorry -- end -- definition graded_homotopy.trans (h₁ : f ~gm g) (h₂ : g ~gm h) : f ~gm h := -- begin -- exact sorry -- end -- postfix `⁻¹ᵍᵐ`:(max + 1) := graded_iso.symm --infixl ` ⬝gm `:75 := graded_homotopy.trans -- infixl ` ⬝gmp `:75 := graded_iso.trans_eq -- infixl ` ⬝pgm `:75 := graded_iso.eq_trans -- definition graded_homotopy_of_deg (d : I ≃ I) (f g : graded_hom_of_deg d M₁ M₂) : Type := -- Π⦃i j : I⦄ (p : d i = j), f p ~ g p -- notation f ` ~[`:50 d:0 `] `:0 g:50 := graded_homotopy_of_deg d f g -- variables {d : I ≃ I} {f₁ f₂ : graded_hom_of_deg d M₁ M₂} -- definition graded_homotopy_of_deg.mk [constructor] (h : Πi, f₁ (idpath (d i)) ~ f₂ (idpath (d i))) : -- f₁ ~[d] f₂ := -- begin -- intro i j p, induction p, exact h i -- end -- definition graded_homotopy.mk_out [constructor] {M₁ M₂ : graded_module R I} (d : I ≃ I) -- (fn : Πi, M₁ (d⁻¹ i) →lm M₂ i) : M₁ →gm M₂ := -- graded_hom.mk' d (λi j p, fn j ∘lm homomorphism_of_eq (ap M₁ (eq_inv_of_eq p))) -- definition is_gconstant (f : M₁ →gm M₂) : Type := -- f↘ ~[deg f] gmd0 definition compose_constant (f' : M₂ →gm M₃) (f : M₁ →gm M₂) : Type := Π⦃i j k : I⦄ (p : deg f i = j) (q : deg f' j = k) (m : M₁ i), f' ↘ q (f ↘ p m) = 0 definition compose_constant.mk (h : Πi m, f' (deg f i) (f i m) = 0) : compose_constant f' f := by intros; induction p; induction q; exact h i m definition compose_constant.elim (h : compose_constant f' f) (i : I) (m : M₁ i) : f' (deg f i) (f i m) = 0 := h idp idp m definition is_gconstant (f : M₁ →gm M₂) : Type := Π⦃i j : I⦄ (p : deg f i = j) (m : M₁ i), f ↘ p m = 0 definition is_gconstant.mk (h : Πi m, f i m = 0) : is_gconstant f := by intros; induction p; exact h i m definition is_gconstant.elim (h : is_gconstant f) (i : I) (m : M₁ i) : f i m = 0 := h idp m /- direct sum of graded R-modules -/ variables {J : Set} (N : graded_module R J) definition dirsum' : AddAbGroup := group.dirsum (λj, AddAbGroup_of_LeftModule (N j)) variable {N} definition dirsum_smul [constructor] (r : R) : dirsum' N →a dirsum' N := dirsum_functor (λi, smul_homomorphism (N i) r) definition dirsum_smul_right_distrib (r s : R) (n : dirsum' N) : dirsum_smul (r + s) n = dirsum_smul r n + dirsum_smul s n := begin refine dirsum_functor_homotopy _ n ⬝ !dirsum_functor_add⁻¹, intro i ni, exact to_smul_right_distrib r s ni end definition dirsum_mul_smul' (r s : R) (n : dirsum' N) : dirsum_smul (r * s) n = (dirsum_smul r ∘a dirsum_smul s) n := begin refine dirsum_functor_homotopy _ n ⬝ (dirsum_functor_compose _ _ n)⁻¹ᵖ, intro i ni, exact to_mul_smul r s ni end definition dirsum_mul_smul (r s : R) (n : dirsum' N) : dirsum_smul (r * s) n = dirsum_smul r (dirsum_smul s n) := proof dirsum_mul_smul' r s n qed definition dirsum_one_smul (n : dirsum' N) : dirsum_smul 1 n = n := begin refine dirsum_functor_homotopy _ n ⬝ !dirsum_functor_gid, intro i ni, exact to_one_smul ni end definition dirsum : LeftModule R := LeftModule_of_AddAbGroup (dirsum' N) (λr n, dirsum_smul r n) (λr, homomorphism.addstruct (dirsum_smul r)) dirsum_smul_right_distrib dirsum_mul_smul dirsum_one_smul /- graded variants of left-module constructions -/ definition graded_submodule [constructor] (S : Πi, submodule_rel (M i)) : graded_module R I := λi, submodule (S i) definition graded_submodule_incl [constructor] (S : Πi, submodule_rel (M i)) : graded_submodule S →gm M := graded_hom.mk erfl (λi, submodule_incl (S i)) definition graded_hom_lift [constructor] {S : Πi, submodule_rel (M₂ i)} (φ : M₁ →gm M₂) (h : Π(i : I) (m : M₁ i), S (deg φ i) (φ i m)) : M₁ →gm graded_submodule S := graded_hom.mk (deg φ) (λi, hom_lift (φ i) (h i)) definition graded_submodule_functor [constructor] {S : Πi, submodule_rel (M₁ i)} {T : Πi, submodule_rel (M₂ i)} (φ : M₁ →gm M₂) (h : Π(i : I) (m : M₁ i), S i m → T (deg φ i) (φ i m)) : graded_submodule S →gm graded_submodule T := graded_hom.mk (deg φ) (λi, submodule_functor (φ i) (h i)) definition graded_image (f : M₁ →gm M₂) : graded_module R I := λi, image_module (f ← i) lemma graded_image_lift_lemma (f : M₁ →gm M₂) {i j: I} (p : deg f i = j) (m : M₁ i) : image (f ← j) (f ↘ p m) := graded_hom_change_image p (right_inv (deg f) j) (image.mk m idp) definition graded_image_lift [constructor] (f : M₁ →gm M₂) : M₁ →gm graded_image f := graded_hom.mk' (deg f) (λi j p, hom_lift (f ↘ p) (graded_image_lift_lemma f p)) definition graded_image_lift_destruct (f : M₁ →gm M₂) {i : I} (m : M₁ ((deg f)⁻¹ᵉ i)) : graded_image_lift f ← i m = image_lift (f ← i) m := subtype_eq idp definition graded_image.rec {f : M₁ →gm M₂} {i : I} {P : graded_image f (deg f i) → Type} [h : Πx, is_prop (P x)] (H : Πm, P (graded_image_lift f i m)) : Πm, P m := begin assert H₂ : Πi' (p : deg f i' = deg f i) (m : M₁ i'), P ⟨f ↘ p m, graded_hom_change_image p _ (image.mk m idp)⟩, { refine eq.rec_equiv_symm (deg f) _, intro m, refine transport P _ (H m), apply subtype_eq, reflexivity }, refine @total_image.rec _ _ _ _ h _, intro m, refine transport P _ (H₂ _ (right_inv (deg f) (deg f i)) m), apply subtype_eq, reflexivity end definition image_graded_image_lift {f : M₁ →gm M₂} {i j : I} (p : deg f i = j) (m : graded_image f j) (h : image (f ↘ p) m.1) : image (graded_image_lift f ↘ p) m := begin induction p, revert m h, refine total_image.rec _, intro m h, induction h with n q, refine image.mk n (subtype_eq q) end lemma is_surjective_graded_image_lift ⦃x y⦄ (f : M₁ →gm M₂) (p : deg f x = y) : is_surjective (graded_image_lift f ↘ p) := begin intro m, apply image_graded_image_lift, exact graded_hom_change_image (right_inv (deg f) y) _ m.2 end definition graded_image_elim [constructor] {f : M₁ →gm M₂} (g : M₁ →gm M₃) (h : Π⦃i m⦄, f i m = 0 → g i m = 0) : graded_image f →gm M₃ := begin apply graded_hom.mk_out_in (deg f) (deg g), intro i, apply image_elim (g ↘ (ap (deg g) (to_left_inv (deg f) i))), exact abstract begin intro m p, refine graded_hom_eq_zero m (h _), exact graded_hom_eq_zero m p end end end lemma graded_image_elim_destruct {f : M₁ →gm M₂} {g : M₁ →gm M₃} (h : Π⦃i m⦄, f i m = 0 → g i m = 0) {i j k : I} (p' : deg f i = j) (p : deg g ((deg f)⁻¹ᵉ j) = k) (q : deg g i = k) (r : ap (deg g) (to_left_inv (deg f) i) ⬝ q = ap ((deg f)⁻¹ᵉ ⬝e deg g) p' ⬝ p) (m : M₁ i) : graded_image_elim g h ↘ p (graded_image_lift f ↘ p' m) = g ↘ q m := begin revert i j p' k p q r m, refine equiv_rect (deg f ⬝e (deg f)⁻¹ᵉ) _ _, intro i, refine eq.rec_grading _ (deg f) (right_inv (deg f) (deg f i)) _, intro k p q r m, assert r' : q = p, { refine cancel_left _ (r ⬝ whisker_right _ _), refine !ap_compose ⬝ ap02 (deg g) _, exact !adj_inv⁻¹ }, induction r', clear r, revert k q m, refine eq.rec_to (ap (deg g) (to_left_inv (deg f) i)) _, intro m, refine graded_hom_mk_out_in_destruct (deg f) (deg g) _ (graded_image_lift f ← (deg f i) m) ⬝ _, refine ap (image_elim _ _) !graded_image_lift_destruct ⬝ _, reflexivity end /- alternative (easier) definition of graded_image with "wrong" grading -/ -- definition graded_image' (f : M₁ →gm M₂) : graded_module R I := -- λi, image_module (f i) -- definition graded_image'_lift [constructor] (f : M₁ →gm M₂) : M₁ →gm graded_image' f := -- graded_hom.mk erfl (λi, image_lift (f i)) -- definition graded_image'_elim [constructor] {f : M₁ →gm M₂} (g : M₁ →gm M₃) -- (h : Π⦃i m⦄, f i m = 0 → g i m = 0) : -- graded_image' f →gm M₃ := -- begin -- apply graded_hom.mk (deg g), -- intro i, -- apply image_elim (g i), -- intro m p, exact h p -- end -- theorem graded_image'_elim_compute {f : M₁ →gm M₂} {g : M₁ →gm M₃} -- (h : Π⦃i m⦄, f i m = 0 → g i m = 0) : -- graded_image'_elim g h ∘gm graded_image'_lift f ~gm g := -- begin -- apply graded_homotopy.mk, -- intro i m, exact sorry --reflexivity -- end -- theorem graded_image_elim_compute {f : M₁ →gm M₂} {g : M₁ →gm M₃} -- (h : Π⦃i m⦄, f i m = 0 → g i m = 0) : -- graded_image_elim g h ∘gm graded_image_lift f ~gm g := -- begin -- refine _ ⬝gm graded_image'_elim_compute h, -- esimp, exact sorry -- -- refine graded_hom_out_in_compose_out _ _ ⬝gm _, exact sorry -- -- -- apply graded_homotopy.mk, -- -- -- intro i m, -- end -- variables {α β : I ≃ I} -- definition gen_image (f : M₁ →gm M₂) (p : Πi, deg f (α i) = β i) : graded_module R I := -- λi, image_module (f ↘ (p i)) -- definition gen_image_lift [constructor] (f : M₁ →gm M₂) (p : Πi, deg f (α i) = β i) : M₁ →gm gen_image f p := -- graded_hom.mk_out α⁻¹ᵉ (λi, image_lift (f ↘ (p i))) -- definition gen_image_elim [constructor] {f : M₁ →gm M₂} (p : Πi, deg f (α i) = β i) (g : M₁ →gm M₃) -- (h : Π⦃i m⦄, f i m = 0 → g i m = 0) : -- gen_image f p →gm M₃ := -- begin -- apply graded_hom.mk_out_in α⁻¹ᵉ (deg g), -- intro i, -- apply image_elim (g ↘ (ap (deg g) (to_right_inv α i))), -- intro m p, -- refine graded_hom_eq_zero m (h _), -- exact graded_hom_eq_zero m p -- end -- theorem gen_image_elim_compute {f : M₁ →gm M₂} {p : deg f ∘ α ~ β} {g : M₁ →gm M₃} -- (h : Π⦃i m⦄, f i m = 0 → g i m = 0) : -- gen_image_elim p g h ∘gm gen_image_lift f p ~gm g := -- begin -- -- induction β with β βe, esimp at *, induction p using homotopy.rec_on_idp, -- assert q : β ⬝e (deg f)⁻¹ᵉ = α, -- { apply equiv_eq, intro i, apply inv_eq_of_eq, exact (p i)⁻¹ }, -- induction q, -- -- unfold [gen_image_elim, gen_image_lift], -- -- induction (is_prop.elim (λi, to_right_inv (deg f) (β i)) p), -- -- apply graded_homotopy.mk, -- -- intro i m, reflexivity -- exact sorry -- end definition graded_kernel (f : M₁ →gm M₂) : graded_module R I := λi, kernel_module (f i) definition graded_quotient (S : Πi, submodule_rel (M i)) : graded_module R I := λi, quotient_module (S i) definition graded_quotient_map [constructor] (S : Πi, submodule_rel (M i)) : M →gm graded_quotient S := graded_hom.mk erfl (λi, quotient_map (S i)) definition graded_quotient_elim [constructor] {S : Πi, submodule_rel (M i)} (φ : M →gm M₂) (H : Πi ⦃m⦄, S i m → φ i m = 0) : graded_quotient S →gm M₂ := graded_hom.mk (deg φ) (λi, quotient_elim (φ i) (H i)) definition graded_homology (g : M₂ →gm M₃) (f : M₁ →gm M₂) : graded_module R I := graded_quotient (λi, submodule_rel_submodule (kernel_rel (g i)) (image_rel (f ← i))) -- the two reasonable definitions of graded_homology are definitionally equal example (g : M₂ →gm M₃) (f : M₁ →gm M₂) : (λi, homology (g i) (f ← i)) = graded_quotient (λi, submodule_rel_submodule (kernel_rel (g i)) (image_rel (f ← i))) := idp definition graded_homology.mk (g : M₂ →gm M₃) (f : M₁ →gm M₂) {i : I} (m : M₂ i) (h : g i m = 0) : graded_homology g f i := homology.mk _ m h definition graded_homology_intro [constructor] (g : M₂ →gm M₃) (f : M₁ →gm M₂) : graded_kernel g →gm graded_homology g f := graded_quotient_map _ definition graded_homology_elim {g : M₂ →gm M₃} {f : M₁ →gm M₂} (h : M₂ →gm M) (H : compose_constant h f) : graded_homology g f →gm M := graded_hom.mk (deg h) (λi, homology_elim (h i) (H _ _)) open trunc definition image_of_graded_homology_intro_eq_zero {g : M₂ →gm M₃} {f : M₁ →gm M₂} ⦃i j : I⦄ (p : deg f i = j) (m : graded_kernel g j) (H : graded_homology_intro g f j m = 0) : image (f ↘ p) m.1 := begin induction p, exact graded_hom_change_image _ _ (rel_of_quotient_map_eq_zero m H) end definition is_exact_gmod (f : M₁ →gm M₂) (f' : M₂ →gm M₃) : Type := Π⦃i j k⦄ (p : deg f i = j) (q : deg f' j = k), is_exact_mod (f ↘ p) (f' ↘ q) definition is_exact_gmod.mk {f : M₁ →gm M₂} {f' : M₂ →gm M₃} (h₁ : Π⦃i⦄ (m : M₁ i), f' (deg f i) (f i m) = 0) (h₂ : Π⦃i⦄ (m : M₂ (deg f i)), f' (deg f i) m = 0 → image (f i) m) : is_exact_gmod f f' := begin intro i j k p q; induction p; induction q; split, apply h₁, apply h₂ end definition gmod_im_in_ker (h : is_exact_gmod f f') : compose_constant f' f := λi j k p q, is_exact.im_in_ker (h p q) definition gmod_ker_in_im (h : is_exact_gmod f f') ⦃i : I⦄ (m : M₂ i) (p : f' i m = 0) : image (f ← i) m := is_exact.ker_in_im (h (right_inv (deg f) i) idp) m p end left_module