/- Copyright (c) 2015 Ulrik Buchholtz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Ulrik Buchholtz -/ import types.trunc types.arrow_2 types.fiber homotopy.susp open eq is_trunc is_equiv nat equiv trunc function fiber namespace homotopy definition is_conn [reducible] (n : trunc_index) (A : Type) : Type := is_contr (trunc n A) definition is_conn_equiv_closed (n : trunc_index) {A B : Type} : A ≃ B → is_conn n A → is_conn n B := begin intros H C, fapply @is_contr_equiv_closed (trunc n A) _, apply trunc_equiv_trunc, assumption end definition is_conn_fun (n : trunc_index) {A B : Type} (f : A → B) : Type := Πb : B, is_conn n (fiber f b) namespace is_conn_fun section parameters {n : trunc_index} {A B : Type} {h : A → B} (H : is_conn_fun n h) (P : B → n -Type) private definition helper : (Πa : A, P (h a)) → Πb : B, trunc n (fiber h b) → P b := λt b, trunc.rec (λx, point_eq x ▸ t (point x)) private definition g : (Πa : A, P (h a)) → (Πb : B, P b) := λt b, helper t b (@center (trunc n (fiber h b)) (H b)) -- induction principle for n-connected maps (Lemma 7.5.7) definition rec : is_equiv (λs : Πb : B, P b, λa : A, s (h a)) := adjointify (λs a, s (h a)) g begin intro t, apply eq_of_homotopy, intro a, unfold g, unfold helper, rewrite [@center_eq _ (H (h a)) (tr (fiber.mk a idp))], end begin intro k, apply eq_of_homotopy, intro b, unfold g, generalize (@center _ (H b)), apply trunc.rec, apply fiber.rec, intros a p, induction p, reflexivity end definition elim : (Πa : A, P (h a)) → (Πb : B, P b) := @is_equiv.inv _ _ (λs a, s (h a)) rec definition elim_β : Πf : (Πa : A, P (h a)), Πa : A, elim f (h a) = f a := λf, apd10 (@is_equiv.right_inv _ _ (λs a, s (h a)) rec f) end section universe variables u v parameters {n : trunc_index} {A : Type.{u}} {B : Type.{v}} {h : A → B} parameter sec : ΠP : B → trunctype.{max u v} n, is_retraction (λs : (Πb : B, P b), λ a, s (h a)) private definition s := sec (λb, trunctype.mk' n (trunc n (fiber h b))) include sec -- the other half of Lemma 7.5.7 definition intro : is_conn_fun n h := begin intro b, apply is_contr.mk (@is_retraction.sect _ _ _ s (λa, tr (fiber.mk a idp)) b), esimp, apply trunc.rec, apply fiber.rec, intros a p, apply transport (λz : (Σy, h a = y), @sect _ _ _ s (λa, tr (mk a idp)) (sigma.pr1 z) = tr (fiber.mk a (sigma.pr2 z))) (@center_eq _ (is_contr_sigma_eq (h a)) (sigma.mk b p)), exact apd10 (@right_inverse _ _ _ s (λa, tr (fiber.mk a idp))) a end end end is_conn_fun -- Connectedness is related to maps to and from the unit type, first to section parameters (n : trunc_index) (A : Type) definition is_conn_of_map_to_unit : is_conn_fun n (λx : A, unit.star) → is_conn n A := begin intro H, unfold is_conn_fun at H, rewrite [-(ua (fiber.fiber_star_equiv A))], exact (H unit.star) end -- now maps from unit definition is_conn_of_map_from_unit (a₀ : A) (H : is_conn_fun n (const unit a₀)) : is_conn n .+1 A := is_contr.mk (tr a₀) begin apply trunc.rec, intro a, exact trunc.elim (λz : fiber (const unit a₀) a, ap tr (point_eq z)) (@center _ (H a)) end definition is_conn_fun_from_unit (a₀ : A) [H : is_conn n .+1 A] : is_conn_fun n (const unit a₀) := begin intro a, apply is_conn_equiv_closed n (equiv.symm (fiber_const_equiv A a₀ a)), apply @is_contr_equiv_closed _ _ (tr_eq_tr_equiv n a₀ a), end end -- Lemma 7.5.2 definition minus_one_conn_of_surjective {A B : Type} (f : A → B) : is_surjective f → is_conn_fun -1 f := begin intro H, intro b, exact @is_contr_of_inhabited_prop (∥fiber f b∥) (is_trunc_trunc -1 (fiber f b)) (H b), end definition is_surjection_of_minus_one_conn {A B : Type} (f : A → B) : is_conn_fun -1 f → is_surjective f := begin intro H, intro b, exact @center (∥fiber f b∥) (H b), end definition merely_of_minus_one_conn {A : Type} : is_conn -1 A → ∥A∥ := λH, @center (∥A∥) H definition minus_one_conn_of_merely {A : Type} : ∥A∥ → is_conn -1 A := @is_contr_of_inhabited_prop (∥A∥) (is_trunc_trunc -1 A) section open arrow variables {f g : arrow} -- Lemma 7.5.4 definition retract_of_conn_is_conn [instance] (r : arrow_hom f g) [H : is_retraction r] (n : trunc_index) [K : is_conn_fun n f] : is_conn_fun n g := begin intro b, unfold is_conn, apply is_contr_retract (trunc_functor n (retraction_on_fiber r b)), exact K (on_cod (arrow.is_retraction.sect r) b) end end -- Corollary 7.5.5 definition is_conn_homotopy (n : trunc_index) {A B : Type} {f g : A → B} (p : f ~ g) (H : is_conn_fun n f) : is_conn_fun n g := @retract_of_conn_is_conn _ _ (arrow.arrow_hom_of_homotopy p) (arrow.is_retraction_arrow_hom_of_homotopy p) n H -- all types are -2-connected definition minus_two_conn [instance] (A : Type) : is_conn -2 A := _ -- Theorem 8.2.1 open susp definition is_conn_susp [instance] (n : trunc_index) (A : Type) [H : is_conn n A] : is_conn (n .+1) (susp A) := is_contr.mk (tr north) begin apply trunc.rec, fapply susp.rec, { reflexivity }, { exact (trunc.rec (λa, ap tr (merid a)) (center (trunc n A))) }, { intro a, generalize (center (trunc n A)), apply trunc.rec, intro a', apply pathover_of_tr_eq, rewrite [eq_transport_Fr,idp_con], revert H, induction n with [n, IH], { intro H, apply is_prop.elim }, { intros H, change ap (@tr n .+2 (susp A)) (merid a) = ap tr (merid a'), generalize a', apply is_conn_fun.elim (is_conn_fun_from_unit n A a) (λx : A, trunctype.mk' n (ap (@tr n .+2 (susp A)) (merid a) = ap tr (merid x))), intros, change ap (@tr n .+2 (susp A)) (merid a) = ap tr (merid a), reflexivity } } end end homotopy