/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn, Egbert Rijke Constructions with groups -/ import algebra.group_theory hit.set_quotient types.list types.sum .subgroup .quotient_group .product_group open eq algebra is_trunc set_quotient relation sigma sigma.ops prod prod.ops sum list trunc function equiv namespace group variables {G G' : Group} (H : subgroup_rel G) (N : normal_subgroup_rel G) {g g' h h' k : G} {A B : CommGroup} /- Free Group of a set -/ variables (X : Set) {l l' : list (X ⊎ X)} namespace free_group inductive free_group_rel : list (X ⊎ X) → list (X ⊎ X) → Type := | rrefl : Πl, free_group_rel l l | cancel1 : Πx, free_group_rel [inl x, inr x] [] | cancel2 : Πx, free_group_rel [inr x, inl x] [] | resp_append : Π{l₁ l₂ l₃ l₄}, free_group_rel l₁ l₂ → free_group_rel l₃ l₄ → free_group_rel (l₁ ++ l₃) (l₂ ++ l₄) | rtrans : Π{l₁ l₂ l₃}, free_group_rel l₁ l₂ → free_group_rel l₂ l₃ → free_group_rel l₁ l₃ open free_group_rel local abbreviation R [reducible] := free_group_rel attribute free_group_rel.rrefl [refl] definition free_group_carrier [reducible] : Type := set_quotient (λx y, ∥R X x y∥) local abbreviation FG := free_group_carrier definition is_reflexive_R : is_reflexive (λx y, ∥R X x y∥) := begin constructor, intro s, apply tr, unfold R end local attribute is_reflexive_R [instance] variable {X} theorem rel_respect_flip (r : R X l l') : R X (map sum.flip l) (map sum.flip l') := begin induction r with l x x l₁ l₂ l₃ l₄ r₁ r₂ IH₁ IH₂ l₁ l₂ l₃ r₁ r₂ IH₁ IH₂, { reflexivity}, { repeat esimp [map], exact cancel2 x}, { repeat esimp [map], exact cancel1 x}, { rewrite [+map_append], exact resp_append IH₁ IH₂}, { exact rtrans IH₁ IH₂} end theorem rel_respect_reverse (r : R X l l') : R X (reverse l) (reverse l') := begin induction r with l x x l₁ l₂ l₃ l₄ r₁ r₂ IH₁ IH₂ l₁ l₂ l₃ r₁ r₂ IH₁ IH₂, { reflexivity}, { repeat esimp [map], exact cancel2 x}, { repeat esimp [map], exact cancel1 x}, { rewrite [+reverse_append], exact resp_append IH₂ IH₁}, { exact rtrans IH₁ IH₂} end definition free_group_one [constructor] : FG X := class_of [] definition free_group_inv [unfold 3] : FG X → FG X := quotient_unary_map (reverse ∘ map sum.flip) (λl l', trunc_functor -1 (rel_respect_reverse ∘ rel_respect_flip)) definition free_group_mul [unfold 3 4] : FG X → FG X → FG X := quotient_binary_map append (λl l', trunc.elim (λr m m', trunc.elim (λs, tr (resp_append r s)))) section local notation 1 := free_group_one local postfix ⁻¹ := free_group_inv local infix * := free_group_mul theorem free_group_mul_assoc (g₁ g₂ g₃ : FG X) : g₁ * g₂ * g₃ = g₁ * (g₂ * g₃) := begin refine set_quotient.rec_prop _ g₁, refine set_quotient.rec_prop _ g₂, refine set_quotient.rec_prop _ g₃, clear g₁ g₂ g₃, intro g₁ g₂ g₃, exact ap class_of !append.assoc end theorem free_group_one_mul (g : FG X) : 1 * g = g := begin refine set_quotient.rec_prop _ g, clear g, intro g, exact ap class_of !append_nil_left end theorem free_group_mul_one (g : FG X) : g * 1 = g := begin refine set_quotient.rec_prop _ g, clear g, intro g, exact ap class_of !append_nil_right end theorem free_group_mul_left_inv (g : FG X) : g⁻¹ * g = 1 := begin refine set_quotient.rec_prop _ g, clear g, intro g, apply eq_of_rel, apply tr, induction g with s l IH, { reflexivity}, { rewrite [▸*, map_cons, reverse_cons, concat_append], refine rtrans _ IH, apply resp_append, reflexivity, change R X ([flip s, s] ++ l) ([] ++ l), apply resp_append, induction s, apply cancel2, apply cancel1, reflexivity} end end end free_group open free_group -- export [reduce_hints] free_group variables (X) definition group_free_group [constructor] : group (free_group_carrier X) := group.mk free_group_mul _ free_group_mul_assoc free_group_one free_group_one_mul free_group_mul_one free_group_inv free_group_mul_left_inv definition free_group [constructor] : Group := Group.mk _ (group_free_group X) /- The universal property of the free group -/ variables {X G} definition free_group_inclusion [constructor] (x : X) : free_group X := class_of [inl x] definition fgh_helper [unfold 5] (f : X → G) (g : G) (x : X + X) : G := g * sum.rec (λx, f x) (λx, (f x)⁻¹) x theorem fgh_helper_respect_rel (f : X → G) (r : free_group_rel X l l') : Π(g : G), foldl (fgh_helper f) g l = foldl (fgh_helper f) g l' := begin induction r with l x x l₁ l₂ l₃ l₄ r₁ r₂ IH₁ IH₂ l₁ l₂ l₃ r₁ r₂ IH₁ IH₂: intro g, { reflexivity}, { unfold [foldl], apply mul_inv_cancel_right}, { unfold [foldl], apply inv_mul_cancel_right}, { rewrite [+foldl_append, IH₁, IH₂]}, { exact !IH₁ ⬝ !IH₂} end theorem fgh_helper_mul (f : X → G) (l) : Π(g : G), foldl (fgh_helper f) g l = g * foldl (fgh_helper f) 1 l := begin induction l with s l IH: intro g, { unfold [foldl], exact !mul_one⁻¹}, { rewrite [+foldl_cons, IH], refine _ ⬝ (ap (λx, g * x) !IH⁻¹), rewrite [-mul.assoc, ↑fgh_helper, one_mul]} end definition free_group_hom [constructor] (f : X → G) : free_group X →g G := begin fapply homomorphism.mk, { intro g, refine set_quotient.elim _ _ g, { intro l, exact foldl (fgh_helper f) 1 l}, { intro l l' r, esimp at *, refine trunc.rec _ r, clear r, intro r, exact fgh_helper_respect_rel f r 1}}, { refine set_quotient.rec_prop _, intro l, refine set_quotient.rec_prop _, intro l', esimp, refine !foldl_append ⬝ _, esimp, apply fgh_helper_mul} end definition fn_of_free_group_hom [unfold_full] (φ : free_group X →g G) : X → G := φ ∘ free_group_inclusion variables (X G) definition free_group_hom_equiv_fn : (free_group X →g G) ≃ (X → G) := begin fapply equiv.MK, { exact fn_of_free_group_hom}, { exact free_group_hom}, { intro f, apply eq_of_homotopy, intro x, esimp, unfold [foldl], apply one_mul}, { intro φ, apply homomorphism_eq, refine set_quotient.rec_prop _, intro l, esimp, induction l with s l IH, { esimp [foldl], exact (respect_one φ)⁻¹}, { rewrite [foldl_cons, fgh_helper_mul], refine _ ⬝ (respect_mul φ (class_of [s]) (class_of l))⁻¹, rewrite [IH], induction s: rewrite [▸*, one_mul], rewrite [-respect_inv φ]}} end end group