/- Copyright (c) 2016 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn The old formalization of the LES of homotopy groups, where all the odd levels have a composition with negation -/ import .LES_of_homotopy_groups open eq pointed sigma fiber equiv is_equiv sigma.ops is_trunc nat trunc algebra function /-------------- PART 1 --------------/ namespace chain_complex namespace old universe variable u variables {X Y : pType.{u}} (f : X →* Y) (n : ℕ) include f /-------------- PART 2 --------------/ /- Now we are ready to define the long exact sequence of homotopy groups. First we define its carrier -/ definition homotopy_groups : ℕ → Type* | 0 := Y | 1 := X | 2 := pfiber f | (k+3) := Ω (homotopy_groups k) definition homotopy_groups_add3 [unfold_full] : homotopy_groups f (n+3) = Ω (homotopy_groups f n) := by reflexivity definition homotopy_groups_mul3 : Πn, homotopy_groups f (3 * n) = Ω[n] Y :> Type* | 0 := proof rfl qed | (k+1) := proof ap (λX, Ω X) (homotopy_groups_mul3 k) qed definition homotopy_groups_mul3add1 : Πn, homotopy_groups f (3 * n + 1) = Ω[n] X :> Type* | 0 := by reflexivity | (k+1) := proof ap (λX, Ω X) (homotopy_groups_mul3add1 k) qed definition homotopy_groups_mul3add2 : Πn, homotopy_groups f (3 * n + 2) = Ω[n] (pfiber f) :> Type* | 0 := by reflexivity | (k+1) := proof ap (λX, Ω X) (homotopy_groups_mul3add2 k) qed /- The maps between the homotopy groups -/ definition homotopy_groups_fun : Π(n : ℕ), homotopy_groups f (n+1) →* homotopy_groups f n | 0 := proof f qed | 1 := proof ppoint f qed | 2 := proof boundary_map f qed | 3 := proof ap1 f ∘* pinverse qed | 4 := proof ap1 (ppoint f) ∘* pinverse qed | 5 := proof ap1 (boundary_map f) ∘* pinverse qed | (k+6) := proof ap1 (ap1 (homotopy_groups_fun k)) qed definition homotopy_groups_fun_add6 [unfold_full] : homotopy_groups_fun f (n + 6) = ap1 (ap1 (homotopy_groups_fun f n)) := proof idp qed /- this is a simpler defintion of the functions, but which are the same as the previous ones (there is a pointed homotopy) -/ definition homotopy_groups_fun' : Π(n : ℕ), homotopy_groups f (n+1) →* homotopy_groups f n | 0 := proof f qed | 1 := proof ppoint f qed | 2 := proof boundary_map f qed | (k+3) := proof ap1 (homotopy_groups_fun' k) ∘* pinverse qed definition homotopy_groups_fun'_add3 [unfold_full] : homotopy_groups_fun' f (n+3) = ap1 (homotopy_groups_fun' f n) ∘* pinverse := proof idp qed theorem homotopy_groups_fun_eq : Π(n : ℕ), homotopy_groups_fun f n ~* homotopy_groups_fun' f n | 0 := by reflexivity | 1 := by reflexivity | 2 := by reflexivity | 3 := by reflexivity | 4 := by reflexivity | 5 := by reflexivity | (k+6) := begin rewrite [homotopy_groups_fun_add6 f k], replace (k + 6) with (k + 3 + 3), rewrite [homotopy_groups_fun'_add3 f (k+3)], rewrite [homotopy_groups_fun'_add3 f k], refine _ ⬝* pwhisker_right _ !ap1_compose⁻¹*, refine _ ⬝* !passoc⁻¹*, refine !comp_pid⁻¹* ⬝* _, refine pconcat2 _ _, /- Currently ap1_phomotopy is defined using function extensionality -/ { apply ap1_phomotopy, apply pap ap1, apply homotopy_groups_fun_eq}, { refine _ ⬝* (pwhisker_right _ ap1_pinverse)⁻¹*, fapply phomotopy.mk, { intro q, esimp, exact !inv_inv⁻¹}, { reflexivity}} end definition homotopy_groups_fun_add3 : homotopy_groups_fun f (n + 3) ~* ap1 (homotopy_groups_fun f n) ∘* pinverse := begin refine homotopy_groups_fun_eq f (n+3) ⬝* _, exact pwhisker_right _ (ap1_phomotopy (homotopy_groups_fun_eq f n)⁻¹*), end definition fiber_sequence_pequiv_homotopy_groups : Πn, fiber_sequence_carrier f n ≃* homotopy_groups f n | 0 := by reflexivity | 1 := by reflexivity | 2 := by reflexivity | (k+3) := begin refine fiber_sequence_carrier_pequiv f k ⬝e* _, apply loop_pequiv_loop, exact fiber_sequence_pequiv_homotopy_groups k end definition fiber_sequence_pequiv_homotopy_groups_add3 : fiber_sequence_pequiv_homotopy_groups f (n + 3) = ap1 (fiber_sequence_pequiv_homotopy_groups f n) ∘* fiber_sequence_carrier_pequiv f n := by reflexivity definition fiber_sequence_pequiv_homotopy_groups_3_phomotopy : fiber_sequence_pequiv_homotopy_groups f 3 ~* fiber_sequence_carrier_pequiv f 0 := begin refine fiber_sequence_pequiv_homotopy_groups_add3 f 0 ⬝p* _, refine pwhisker_right _ ap1_id ⬝* _, apply pid_comp end theorem fiber_sequence_phomotopy_homotopy_groups' : Π(n : ℕ), fiber_sequence_pequiv_homotopy_groups f n ∘* fiber_sequence_fun f n ~* homotopy_groups_fun' f n ∘* fiber_sequence_pequiv_homotopy_groups f (n + 1) | 0 := by reflexivity | 1 := by reflexivity | 2 := begin refine !pid_comp ⬝* _, replace homotopy_groups_fun' f 2 with boundary_map f, refine _ ⬝* pwhisker_left _ (fiber_sequence_pequiv_homotopy_groups_3_phomotopy f)⁻¹*, apply phomotopy_of_pinv_right_phomotopy, reflexivity end | (k+3) := begin replace (k + 3 + 1) with (k + 1 + 3), rewrite [fiber_sequence_pequiv_homotopy_groups_add3 f k, fiber_sequence_pequiv_homotopy_groups_add3 f (k+1)], refine !passoc ⬝* _, refine pwhisker_left _ (fiber_sequence_fun_phomotopy f k) ⬝* _, refine !passoc⁻¹* ⬝* _ ⬝* !passoc, apply pwhisker_right, rewrite [homotopy_groups_fun'_add3], refine _ ⬝* !passoc⁻¹*, refine _ ⬝* pwhisker_left _ !ap1_compose_pinverse, refine !passoc⁻¹* ⬝* _ ⬝* !passoc, apply pwhisker_right, refine !ap1_compose⁻¹* ⬝* _ ⬝* !ap1_compose, apply ap1_phomotopy, exact fiber_sequence_phomotopy_homotopy_groups' k end theorem fiber_sequence_phomotopy_homotopy_groups (n : ℕ) (x : fiber_sequence_carrier f (n + 1)) : fiber_sequence_pequiv_homotopy_groups f n (fiber_sequence_fun f n x) = homotopy_groups_fun f n (fiber_sequence_pequiv_homotopy_groups f (n + 1) x) := begin refine fiber_sequence_phomotopy_homotopy_groups' f n x ⬝ _, exact (homotopy_groups_fun_eq f n _)⁻¹ end definition type_LES_of_homotopy_groups [constructor] : type_chain_complex +ℕ := transfer_type_chain_complex (fiber_sequence f) (homotopy_groups_fun f) (fiber_sequence_pequiv_homotopy_groups f) (fiber_sequence_phomotopy_homotopy_groups f) definition is_exact_type_LES_of_homotopy_groups : is_exact_t (type_LES_of_homotopy_groups f) := begin intro n, apply is_exact_at_t_transfer, apply is_exact_fiber_sequence end /- the long exact sequence of homotopy groups -/ definition LES_of_homotopy_groups [constructor] : chain_complex +ℕ := trunc_chain_complex (transfer_type_chain_complex (fiber_sequence f) (homotopy_groups_fun f) (fiber_sequence_pequiv_homotopy_groups f) (fiber_sequence_phomotopy_homotopy_groups f)) /- the fiber sequence is exact -/ definition is_exact_LES_of_homotopy_groups : is_exact (LES_of_homotopy_groups f) := begin intro n, apply is_exact_at_trunc, apply is_exact_type_LES_of_homotopy_groups end /- for a numeral, the carrier of the fiber sequence is definitionally what we want (as pointed sets) -/ example : LES_of_homotopy_groups f 6 = π*[2] Y :> Set* := by reflexivity example : LES_of_homotopy_groups f 7 = π*[2] X :> Set* := by reflexivity example : LES_of_homotopy_groups f 8 = π*[2] (pfiber f) :> Set* := by reflexivity /- for a numeral, the functions of the fiber sequence is definitionally what we want (as pointed function). All these functions have at most one "pinverse" in them, and these inverses are inside the π→*[2*k]. -/ example : cc_to_fn (LES_of_homotopy_groups f) 6 = π→*[2] f :> (_ →* _) := by reflexivity example : cc_to_fn (LES_of_homotopy_groups f) 7 = π→*[2] (ppoint f) :> (_ →* _) := by reflexivity example : cc_to_fn (LES_of_homotopy_groups f) 8 = π→*[2] (boundary_map f) :> (_ →* _) := by reflexivity example : cc_to_fn (LES_of_homotopy_groups f) 9 = π→*[2] (ap1 f ∘* pinverse) :> (_ →* _) := by reflexivity example : cc_to_fn (LES_of_homotopy_groups f) 10 = π→*[2] (ap1 (ppoint f) ∘* pinverse) :> (_ →* _) := by reflexivity example : cc_to_fn (LES_of_homotopy_groups f) 11 = π→*[2] (ap1 (boundary_map f) ∘* pinverse) :> (_ →* _) := by reflexivity example : cc_to_fn (LES_of_homotopy_groups f) 12 = π→*[4] f :> (_ →* _) := by reflexivity /- the carrier of the fiber sequence is what we want for natural numbers of the form 3n, 3n+1 and 3n+2 -/ definition LES_of_homotopy_groups_mul3 (n : ℕ) : LES_of_homotopy_groups f (3 * n) = π*[n] Y :> Set* := begin apply ptrunctype_eq_of_pType_eq, exact ap (ptrunc 0) (homotopy_groups_mul3 f n) end definition LES_of_homotopy_groups_mul3add1 (n : ℕ) : LES_of_homotopy_groups f (3 * n + 1) = π*[n] X :> Set* := begin apply ptrunctype_eq_of_pType_eq, exact ap (ptrunc 0) (homotopy_groups_mul3add1 f n) end definition LES_of_homotopy_groups_mul3add2 (n : ℕ) : LES_of_homotopy_groups f (3 * n + 2) = π*[n] (pfiber f) :> Set* := begin apply ptrunctype_eq_of_pType_eq, exact ap (ptrunc 0) (homotopy_groups_mul3add2 f n) end definition LES_of_homotopy_groups_mul3' (n : ℕ) : LES_of_homotopy_groups f (3 * n) = π*[n] Y :> Type := begin exact ap (ptrunc 0) (homotopy_groups_mul3 f n) end definition LES_of_homotopy_groups_mul3add1' (n : ℕ) : LES_of_homotopy_groups f (3 * n + 1) = π*[n] X :> Type := begin exact ap (ptrunc 0) (homotopy_groups_mul3add1 f n) end definition LES_of_homotopy_groups_mul3add2' (n : ℕ) : LES_of_homotopy_groups f (3 * n + 2) = π*[n] (pfiber f) :> Type := begin exact ap (ptrunc 0) (homotopy_groups_mul3add2 f n) end definition group_LES_of_homotopy_groups (n : ℕ) : group (LES_of_homotopy_groups f (n + 3)) := group_homotopy_group 0 (homotopy_groups f n) definition comm_group_LES_of_homotopy_groups (n : ℕ) : comm_group (LES_of_homotopy_groups f (n + 6)) := comm_group_homotopy_group 0 (homotopy_groups f n) end old end chain_complex open group prod succ_str fin /-------------- PART 3 --------------/ namespace chain_complex namespace old section universe variable u parameters {X Y : pType.{u}} (f : X →* Y) definition homotopy_groups2 [reducible] : +6ℕ → Type* | (n, fin.mk 0 H) := Ω[2*n] Y | (n, fin.mk 1 H) := Ω[2*n] X | (n, fin.mk 2 H) := Ω[2*n] (pfiber f) | (n, fin.mk 3 H) := Ω[2*n + 1] Y | (n, fin.mk 4 H) := Ω[2*n + 1] X | (n, fin.mk k H) := Ω[2*n + 1] (pfiber f) definition homotopy_groups2_add1 (n : ℕ) : Π(x : fin (succ 5)), homotopy_groups2 (n+1, x) = Ω Ω(homotopy_groups2 (n, x)) | (fin.mk 0 H) := by reflexivity | (fin.mk 1 H) := by reflexivity | (fin.mk 2 H) := by reflexivity | (fin.mk 3 H) := by reflexivity | (fin.mk 4 H) := by reflexivity | (fin.mk 5 H) := by reflexivity | (fin.mk (k+6) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end definition homotopy_groups_fun2 : Π(n : +6ℕ), homotopy_groups2 (S n) →* homotopy_groups2 n | (n, fin.mk 0 H) := proof Ω→[2*n] f qed | (n, fin.mk 1 H) := proof Ω→[2*n] (ppoint f) qed | (n, fin.mk 2 H) := proof Ω→[2*n] (boundary_map f) ∘* pcast (loop_space_succ_eq_in Y (2*n)) qed | (n, fin.mk 3 H) := proof Ω→[2*n + 1] f ∘* pinverse qed | (n, fin.mk 4 H) := proof Ω→[2*n + 1] (ppoint f) ∘* pinverse qed | (n, fin.mk 5 H) := proof (Ω→[2*n + 1] (boundary_map f) ∘* pinverse) ∘* pcast (loop_space_succ_eq_in Y (2*n+1)) qed | (n, fin.mk (k+6) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end definition homotopy_groups_fun2_add1_0 (n : ℕ) (H : 0 < succ 5) : homotopy_groups_fun2 (n+1, fin.mk 0 H) ~* cast proof idp qed ap1 (ap1 (homotopy_groups_fun2 (n, fin.mk 0 H))) := by reflexivity definition homotopy_groups_fun2_add1_1 (n : ℕ) (H : 1 < succ 5) : homotopy_groups_fun2 (n+1, fin.mk 1 H) ~* cast proof idp qed ap1 (ap1 (homotopy_groups_fun2 (n, fin.mk 1 H))) := by reflexivity definition homotopy_groups_fun2_add1_2 (n : ℕ) (H : 2 < succ 5) : homotopy_groups_fun2 (n+1, fin.mk 2 H) ~* cast proof idp qed ap1 (ap1 (homotopy_groups_fun2 (n, fin.mk 2 H))) := begin esimp, refine _ ⬝* (ap1_phomotopy !ap1_compose)⁻¹*, refine _ ⬝* !ap1_compose⁻¹*, apply pwhisker_left, refine !pcast_ap_loop_space ⬝* ap1_phomotopy !pcast_ap_loop_space, end definition homotopy_groups_fun2_add1_3 (n : ℕ) (H : 3 < succ 5) : homotopy_groups_fun2 (n+1, fin.mk 3 H) ~* cast proof idp qed ap1 (ap1 (homotopy_groups_fun2 (n, fin.mk 3 H))) := begin esimp, refine _ ⬝* (ap1_phomotopy !ap1_compose)⁻¹*, refine _ ⬝* !ap1_compose⁻¹*, apply pwhisker_left, exact ap1_pinverse⁻¹* ⬝* ap1_phomotopy !ap1_pinverse⁻¹* end definition homotopy_groups_fun2_add1_4 (n : ℕ) (H : 4 < succ 5) : homotopy_groups_fun2 (n+1, fin.mk 4 H) ~* cast proof idp qed ap1 (ap1 (homotopy_groups_fun2 (n, fin.mk 4 H))) := begin esimp, refine _ ⬝* (ap1_phomotopy !ap1_compose)⁻¹*, refine _ ⬝* !ap1_compose⁻¹*, apply pwhisker_left, exact ap1_pinverse⁻¹* ⬝* ap1_phomotopy !ap1_pinverse⁻¹* end definition homotopy_groups_fun2_add1_5 (n : ℕ) (H : 5 < succ 5) : homotopy_groups_fun2 (n+1, fin.mk 5 H) ~* cast proof idp qed ap1 (ap1 (homotopy_groups_fun2 (n, fin.mk 5 H))) := begin esimp, refine _ ⬝* (ap1_phomotopy !ap1_compose)⁻¹*, refine _ ⬝* !ap1_compose⁻¹*, apply pconcat2, { esimp, refine _ ⬝* (ap1_phomotopy !ap1_compose)⁻¹*, refine _ ⬝* !ap1_compose⁻¹*, apply pwhisker_left, exact ap1_pinverse⁻¹* ⬝* ap1_phomotopy !ap1_pinverse⁻¹*}, { refine !pcast_ap_loop_space ⬝* ap1_phomotopy !pcast_ap_loop_space} end definition nat_of_str [unfold 2] [reducible] {n : ℕ} : ℕ × fin (succ n) → ℕ := λx, succ n * pr1 x + val (pr2 x) definition str_of_nat {n : ℕ} : ℕ → ℕ × fin (succ n) := λm, (m / (succ n), mk_mod n m) definition nat_of_str_6S [unfold 2] [reducible] : Π(x : stratified +ℕ 5), nat_of_str x + 1 = nat_of_str (@S (stratified +ℕ 5) x) | (n, fin.mk 0 H) := by reflexivity | (n, fin.mk 1 H) := by reflexivity | (n, fin.mk 2 H) := by reflexivity | (n, fin.mk 3 H) := by reflexivity | (n, fin.mk 4 H) := by reflexivity | (n, fin.mk 5 H) := by reflexivity | (n, fin.mk (k+6) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end definition fin_prod_nat_equiv_nat [constructor] (n : ℕ) : ℕ × fin (succ n) ≃ ℕ := equiv.MK nat_of_str str_of_nat abstract begin intro m, unfold [nat_of_str, str_of_nat, mk_mod], refine _ ⬝ (eq_div_mul_add_mod m (succ n))⁻¹, rewrite [mul.comm] end end abstract begin intro x, cases x with m k, cases k with k H, apply prod_eq: esimp [str_of_nat], { rewrite [add.comm, add_mul_div_self_left _ _ (!zero_lt_succ), div_eq_zero_of_lt H, zero_add]}, { apply eq_of_veq, esimp [mk_mod], rewrite [add.comm, add_mul_mod_self_left, mod_eq_of_lt H]} end end /- note: in the following theorem the (n+1) case is 6 times the same, so maybe this can be simplified -/ definition homotopy_groups2_pequiv' : Π(n : ℕ) (x : fin (nat.succ 5)), homotopy_groups f (nat_of_str (n, x)) ≃* homotopy_groups2 (n, x) | 0 (fin.mk 0 H) := by reflexivity | 0 (fin.mk 1 H) := by reflexivity | 0 (fin.mk 2 H) := by reflexivity | 0 (fin.mk 3 H) := by reflexivity | 0 (fin.mk 4 H) := by reflexivity | 0 (fin.mk 5 H) := by reflexivity | (n+1) (fin.mk 0 H) := begin -- uncomment the next two lines to have prettier subgoals -- esimp, replace (succ 5 * (n + 1) + 0) with (6*n+3+3), -- rewrite [+homotopy_groups_add3, homotopy_groups2_add1], apply loop_pequiv_loop, apply loop_pequiv_loop, rexact homotopy_groups2_pequiv' n (fin.mk 0 H) end | (n+1) (fin.mk 1 H) := begin apply loop_pequiv_loop, apply loop_pequiv_loop, rexact homotopy_groups2_pequiv' n (fin.mk 1 H) end | (n+1) (fin.mk 2 H) := begin apply loop_pequiv_loop, apply loop_pequiv_loop, rexact homotopy_groups2_pequiv' n (fin.mk 2 H) end | (n+1) (fin.mk 3 H) := begin apply loop_pequiv_loop, apply loop_pequiv_loop, rexact homotopy_groups2_pequiv' n (fin.mk 3 H) end | (n+1) (fin.mk 4 H) := begin apply loop_pequiv_loop, apply loop_pequiv_loop, rexact homotopy_groups2_pequiv' n (fin.mk 4 H) end | (n+1) (fin.mk 5 H) := begin apply loop_pequiv_loop, apply loop_pequiv_loop, rexact homotopy_groups2_pequiv' n (fin.mk 5 H) end | n (fin.mk (k+6) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end definition homotopy_groups2_pequiv : Π(x : +6ℕ), homotopy_groups f (nat_of_str x) ≃* homotopy_groups2 x | (n, x) := homotopy_groups2_pequiv' n x /- all cases where n>0 are basically the same -/ definition homotopy_groups_fun2_phomotopy (x : +6ℕ) : homotopy_groups2_pequiv x ∘* homotopy_groups_fun f (nat_of_str x) ~* (homotopy_groups_fun2 x ∘* homotopy_groups2_pequiv (S x)) ∘* pcast (ap (homotopy_groups f) (nat_of_str_6S x)) := begin cases x with n x, cases x with k H, cases k with k, rotate 1, cases k with k, rotate 1, cases k with k, rotate 1, cases k with k, rotate 1, cases k with k, rotate 1, cases k with k, rotate 2, { /-k=0-/ induction n with n IH, { refine !pid_comp ⬝* _ ⬝* !comp_pid⁻¹* ⬝* !comp_pid⁻¹*, reflexivity}, { refine _ ⬝* !comp_pid⁻¹*, refine _ ⬝* pwhisker_right _ (!homotopy_groups_fun2_add1_0)⁻¹*, refine !ap1_compose⁻¹* ⬝* _ ⬝* !ap1_compose, apply ap1_phomotopy, refine !ap1_compose⁻¹* ⬝* _ ⬝* !ap1_compose, apply ap1_phomotopy, exact IH ⬝* !comp_pid}}, { /-k=1-/ induction n with n IH, { refine !pid_comp ⬝* _ ⬝* !comp_pid⁻¹* ⬝* !comp_pid⁻¹*, reflexivity}, { refine _ ⬝* !comp_pid⁻¹*, refine _ ⬝* pwhisker_right _ (!homotopy_groups_fun2_add1_1)⁻¹*, refine !ap1_compose⁻¹* ⬝* _ ⬝* !ap1_compose, apply ap1_phomotopy, refine !ap1_compose⁻¹* ⬝* _ ⬝* !ap1_compose, apply ap1_phomotopy, exact IH ⬝* !comp_pid}}, { /-k=2-/ induction n with n IH, { refine !pid_comp ⬝* _ ⬝* !comp_pid⁻¹* ⬝* !comp_pid⁻¹*, refine _ ⬝* !comp_pid⁻¹*, reflexivity}, { refine _ ⬝* !comp_pid⁻¹*, refine _ ⬝* pwhisker_right _ (!homotopy_groups_fun2_add1_2)⁻¹*, refine !ap1_compose⁻¹* ⬝* _ ⬝* !ap1_compose, apply ap1_phomotopy, refine !ap1_compose⁻¹* ⬝* _ ⬝* !ap1_compose, apply ap1_phomotopy, exact IH ⬝* !comp_pid}}, { /-k=3-/ induction n with n IH, { refine !pid_comp ⬝* _ ⬝* !comp_pid⁻¹* ⬝* !comp_pid⁻¹*, reflexivity}, { refine _ ⬝* !comp_pid⁻¹*, refine _ ⬝* pwhisker_right _ (!homotopy_groups_fun2_add1_3)⁻¹*, refine !ap1_compose⁻¹* ⬝* _ ⬝* !ap1_compose, apply ap1_phomotopy, refine !ap1_compose⁻¹* ⬝* _ ⬝* !ap1_compose, apply ap1_phomotopy, exact IH ⬝* !comp_pid}}, { /-k=4-/ induction n with n IH, { refine !pid_comp ⬝* _ ⬝* !comp_pid⁻¹* ⬝* !comp_pid⁻¹*, reflexivity}, { refine _ ⬝* !comp_pid⁻¹*, refine _ ⬝* pwhisker_right _ (!homotopy_groups_fun2_add1_4)⁻¹*, refine !ap1_compose⁻¹* ⬝* _ ⬝* !ap1_compose, apply ap1_phomotopy, refine !ap1_compose⁻¹* ⬝* _ ⬝* !ap1_compose, apply ap1_phomotopy, exact IH ⬝* !comp_pid}}, { /-k=5-/ induction n with n IH, { refine !pid_comp ⬝* _ ⬝* !comp_pid⁻¹*, refine !comp_pid⁻¹* ⬝* pconcat2 _ _, { exact (comp_pid (ap1 (boundary_map f) ∘* pinverse))⁻¹*}, { refine cast (ap (λx, _ ~* loop_pequiv_loop x) !loop_pequiv_loop_rfl)⁻¹ _, refine cast (ap (λx, _ ~* x) !loop_pequiv_loop_rfl)⁻¹ _, reflexivity}}, { refine _ ⬝* !comp_pid⁻¹*, refine _ ⬝* pwhisker_right _ (!homotopy_groups_fun2_add1_5)⁻¹*, refine !ap1_compose⁻¹* ⬝* _ ⬝* !ap1_compose, apply ap1_phomotopy, refine !ap1_compose⁻¹* ⬝* _ ⬝* !ap1_compose, apply ap1_phomotopy, exact IH ⬝* !comp_pid}}, { /-k=k'+6-/ exfalso, apply lt_le_antisymm H, apply le_add_left} end definition type_LES_of_homotopy_groups2 [constructor] : type_chain_complex +6ℕ := transfer_type_chain_complex2 (type_LES_of_homotopy_groups f) !fin_prod_nat_equiv_nat nat_of_str_6S @homotopy_groups_fun2 @homotopy_groups2_pequiv begin intro m x, refine homotopy_groups_fun2_phomotopy m x ⬝ _, apply ap (homotopy_groups_fun2 m), apply ap (homotopy_groups2_pequiv (S m)), esimp, exact ap010 cast !ap_compose⁻¹ x end definition is_exact_type_LES_of_homotopy_groups2 : is_exact_t (type_LES_of_homotopy_groups2) := begin intro n, apply is_exact_at_t_transfer2, apply is_exact_type_LES_of_homotopy_groups end definition LES_of_homotopy_groups2 [constructor] : chain_complex +6ℕ := trunc_chain_complex type_LES_of_homotopy_groups2 /-------------- PART 4 --------------/ definition homotopy_groups3 [reducible] : +6ℕ → Set* | (n, fin.mk 0 H) := π*[2*n] Y | (n, fin.mk 1 H) := π*[2*n] X | (n, fin.mk 2 H) := π*[2*n] (pfiber f) | (n, fin.mk 3 H) := π*[2*n + 1] Y | (n, fin.mk 4 H) := π*[2*n + 1] X | (n, fin.mk k H) := π*[2*n + 1] (pfiber f) definition homotopy_groups3eq2 [reducible] : Π(n : +6ℕ), ptrunc 0 (homotopy_groups2 n) ≃* homotopy_groups3 n | (n, fin.mk 0 H) := by reflexivity | (n, fin.mk 1 H) := by reflexivity | (n, fin.mk 2 H) := by reflexivity | (n, fin.mk 3 H) := by reflexivity | (n, fin.mk 4 H) := by reflexivity | (n, fin.mk 5 H) := by reflexivity | (n, fin.mk (k+6) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end definition homotopy_groups_fun3 : Π(n : +6ℕ), homotopy_groups3 (S n) →* homotopy_groups3 n | (n, fin.mk 0 H) := proof π→*[2*n] f qed | (n, fin.mk 1 H) := proof π→*[2*n] (ppoint f) qed | (n, fin.mk 2 H) := proof π→*[2*n] (boundary_map f) ∘* pcast (ap (ptrunc 0) (loop_space_succ_eq_in Y (2*n))) qed | (n, fin.mk 3 H) := proof π→*[2*n + 1] f ∘* tinverse qed | (n, fin.mk 4 H) := proof π→*[2*n + 1] (ppoint f) ∘* tinverse qed | (n, fin.mk 5 H) := proof (π→*[2*n + 1] (boundary_map f) ∘* tinverse) ∘* pcast (ap (ptrunc 0) (loop_space_succ_eq_in Y (2*n+1))) qed | (n, fin.mk (k+6) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end definition homotopy_groups_fun3eq2 [reducible] : Π(n : +6ℕ), homotopy_groups3eq2 n ∘* ptrunc_functor 0 (homotopy_groups_fun2 n) ~* homotopy_groups_fun3 n ∘* homotopy_groups3eq2 (S n) | (n, fin.mk 0 H) := by reflexivity | (n, fin.mk 1 H) := by reflexivity | (n, fin.mk 2 H) := begin refine !pid_comp ⬝* _ ⬝* !comp_pid⁻¹*, refine !ptrunc_functor_pcompose ⬝* _, apply pwhisker_left, apply ptrunc_functor_pcast, end | (n, fin.mk 3 H) := begin refine !pid_comp ⬝* _ ⬝* !comp_pid⁻¹*, refine !ptrunc_functor_pcompose ⬝* _, apply pwhisker_left, apply ptrunc_functor_pinverse end | (n, fin.mk 4 H) := begin refine !pid_comp ⬝* _ ⬝* !comp_pid⁻¹*, refine !ptrunc_functor_pcompose ⬝* _, apply pwhisker_left, apply ptrunc_functor_pinverse end | (n, fin.mk 5 H) := begin refine !pid_comp ⬝* _ ⬝* !comp_pid⁻¹*, refine !ptrunc_functor_pcompose ⬝* _, apply pconcat2, { refine !ptrunc_functor_pcompose ⬝* _, apply pwhisker_left, apply ptrunc_functor_pinverse}, { apply ptrunc_functor_pcast} end | (n, fin.mk (k+6) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end definition LES_of_homotopy_groups3 [constructor] : chain_complex +6ℕ := transfer_chain_complex LES_of_homotopy_groups2 homotopy_groups_fun3 homotopy_groups3eq2 homotopy_groups_fun3eq2 definition is_exact_LES_of_homotopy_groups3 : is_exact (LES_of_homotopy_groups3) := begin intro n, apply is_exact_at_transfer, apply is_exact_at_trunc, apply is_exact_type_LES_of_homotopy_groups2 end end open is_trunc universe variable u variables {X Y : pType.{u}} (f : X →* Y) (n : ℕ) include f /- the carrier of the fiber sequence is definitionally what we want (as pointed sets) -/ example : LES_of_homotopy_groups3 f (str_of_nat 6) = π*[2] Y :> Set* := by reflexivity example : LES_of_homotopy_groups3 f (str_of_nat 7) = π*[2] X :> Set* := by reflexivity example : LES_of_homotopy_groups3 f (str_of_nat 8) = π*[2] (pfiber f) :> Set* := by reflexivity example : LES_of_homotopy_groups3 f (str_of_nat 9) = π*[3] Y :> Set* := by reflexivity example : LES_of_homotopy_groups3 f (str_of_nat 10) = π*[3] X :> Set* := by reflexivity example : LES_of_homotopy_groups3 f (str_of_nat 11) = π*[3] (pfiber f) :> Set* := by reflexivity definition LES_of_homotopy_groups3_0 : LES_of_homotopy_groups3 f (n, 0) = π*[2*n] Y := by reflexivity definition LES_of_homotopy_groups3_1 : LES_of_homotopy_groups3 f (n, 1) = π*[2*n] X := by reflexivity definition LES_of_homotopy_groups3_2 : LES_of_homotopy_groups3 f (n, 2) = π*[2*n] (pfiber f) := by reflexivity definition LES_of_homotopy_groups3_3 : LES_of_homotopy_groups3 f (n, 3) = π*[2*n + 1] Y := by reflexivity definition LES_of_homotopy_groups3_4 : LES_of_homotopy_groups3 f (n, 4) = π*[2*n + 1] X := by reflexivity definition LES_of_homotopy_groups3_5 : LES_of_homotopy_groups3 f (n, 5) = π*[2*n + 1] (pfiber f):= by reflexivity /- the functions of the fiber sequence is definitionally what we want (as pointed function). -/ definition LES_of_homotopy_groups_fun3_0 : cc_to_fn (LES_of_homotopy_groups3 f) (n, 0) = π→*[2*n] f := by reflexivity definition LES_of_homotopy_groups_fun3_1 : cc_to_fn (LES_of_homotopy_groups3 f) (n, 1) = π→*[2*n] (ppoint f) := by reflexivity definition LES_of_homotopy_groups_fun3_2 : cc_to_fn (LES_of_homotopy_groups3 f) (n, 2) = π→*[2*n] (boundary_map f) ∘* pcast (ap (ptrunc 0) (loop_space_succ_eq_in Y (2*n))) := by reflexivity definition LES_of_homotopy_groups_fun3_3 : cc_to_fn (LES_of_homotopy_groups3 f) (n, 3) = π→*[2*n + 1] f ∘* tinverse := by reflexivity definition LES_of_homotopy_groups_fun3_4 : cc_to_fn (LES_of_homotopy_groups3 f) (n, 4) = π→*[2*n + 1] (ppoint f) ∘* tinverse := by reflexivity definition LES_of_homotopy_groups_fun3_5 : cc_to_fn (LES_of_homotopy_groups3 f) (n, 5) = (π→*[2*n + 1] (boundary_map f) ∘* tinverse) ∘* pcast (ap (ptrunc 0) (loop_space_succ_eq_in Y (2*n+1))) := by reflexivity definition group_LES_of_homotopy_groups3_0 : Π(k : ℕ) (H : k + 3 < succ 5), group (LES_of_homotopy_groups3 f (0, fin.mk (k+3) H)) | 0 H := begin rexact group_homotopy_group 0 Y end | 1 H := begin rexact group_homotopy_group 0 X end | 2 H := begin rexact group_homotopy_group 0 (pfiber f) end | (k+3) H := begin exfalso, apply lt_le_antisymm H, apply le_add_left end definition comm_group_LES_of_homotopy_groups3 (n : ℕ) : Π(x : fin (succ 5)), comm_group (LES_of_homotopy_groups3 f (n + 1, x)) | (fin.mk 0 H) := proof comm_group_homotopy_group (2*n) Y qed | (fin.mk 1 H) := proof comm_group_homotopy_group (2*n) X qed | (fin.mk 2 H) := proof comm_group_homotopy_group (2*n) (pfiber f) qed | (fin.mk 3 H) := proof comm_group_homotopy_group (2*n+1) Y qed | (fin.mk 4 H) := proof comm_group_homotopy_group (2*n+1) X qed | (fin.mk 5 H) := proof comm_group_homotopy_group (2*n+1) (pfiber f) qed | (fin.mk (k+6) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end definition CommGroup_LES_of_homotopy_groups3 (n : +6ℕ) : CommGroup.{u} := CommGroup.mk (LES_of_homotopy_groups3 f (pr1 n + 1, pr2 n)) (comm_group_LES_of_homotopy_groups3 f (pr1 n) (pr2 n)) definition homomorphism_LES_of_homotopy_groups_fun3 : Π(k : +6ℕ), CommGroup_LES_of_homotopy_groups3 f (S k) →g CommGroup_LES_of_homotopy_groups3 f k | (k, fin.mk 0 H) := proof homomorphism.mk (cc_to_fn (LES_of_homotopy_groups3 f) (k + 1, 0)) (phomotopy_group_functor_mul _ _) qed | (k, fin.mk 1 H) := proof homomorphism.mk (cc_to_fn (LES_of_homotopy_groups3 f) (k + 1, 1)) (phomotopy_group_functor_mul _ _) qed | (k, fin.mk 2 H) := begin apply homomorphism.mk (cc_to_fn (LES_of_homotopy_groups3 f) (k + 1, 2)), exact abstract begin rewrite [LES_of_homotopy_groups_fun3_2], refine @is_homomorphism_compose _ _ _ _ _ _ (π→*[2 * (k + 1)] boundary_map f) _ _ _, { apply group_homotopy_group ((2 * k) + 1)}, { apply phomotopy_group_functor_mul}, { rewrite [▸*, -ap_compose', ▸*], apply is_homomorphism_cast_loop_space_succ_eq_in} end end end | (k, fin.mk 3 H) := begin apply homomorphism.mk (cc_to_fn (LES_of_homotopy_groups3 f) (k + 1, 3)), exact abstract begin rewrite [LES_of_homotopy_groups_fun3_3], refine @is_homomorphism_compose _ _ _ _ _ _ (π→*[2 * (k + 1) + 1] f) tinverse _ _, { apply group_homotopy_group (2 * (k+1))}, { apply phomotopy_group_functor_mul}, { apply is_homomorphism_inverse} end end end | (k, fin.mk 4 H) := begin apply homomorphism.mk (cc_to_fn (LES_of_homotopy_groups3 f) (k + 1, 4)), exact abstract begin rewrite [LES_of_homotopy_groups_fun3_4], refine @is_homomorphism_compose _ _ _ _ _ _ (π→*[2 * (k + 1) + 1] (ppoint f)) tinverse _ _, { apply group_homotopy_group (2 * (k+1))}, { apply phomotopy_group_functor_mul}, { apply is_homomorphism_inverse} end end end | (k, fin.mk 5 H) := begin apply homomorphism.mk (cc_to_fn (LES_of_homotopy_groups3 f) (k + 1, 5)), exact abstract begin rewrite [LES_of_homotopy_groups_fun3_5], refine @is_homomorphism_compose _ _ _ _ _ _ (π→*[2 * (k + 1) + 1] (boundary_map f) ∘ tinverse) _ _ _, { refine @is_homomorphism_compose _ _ _ _ _ _ (π→*[2 * (k + 1) + 1] (boundary_map f)) tinverse _ _, { apply group_homotopy_group (2 * (k+1))}, { apply phomotopy_group_functor_mul}, { apply is_homomorphism_inverse}}, { rewrite [▸*, -ap_compose', ▸*], apply is_homomorphism_cast_loop_space_succ_eq_in} end end end | (k, fin.mk (l+6) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end --TODO: the maps 3, 4 and 5 are anti-homomorphisms. end old end chain_complex