/- Copyright (c) 2017 Kuen-Bang Hou (Favonia). Released under Apache 2.0 license as described in the file LICENSE. Author: Kuen-Bang Hou (Favonia) -/ import .homology .sphere ..susp_product open eq pointed group algebra circle sphere nat equiv susp function sphere homology int lift prod smash namespace homology section parameter (theory : ordinary_homology_theory) open ordinary_homology_theory theorem Hptorus : Π(n : ℤ)(m : ℕ), HH theory n (plift (psphere m ×* psphere m)) ≃g HH theory n (plift (psphere m)) ×g (HH theory n (plift (psphere m)) ×g HH theory n (plift (psphere (m + m)))) := λ n m, calc HH theory n (plift (psphere m ×* psphere m)) ≃g HH theory (n + 1) (plift (⅀ (psphere m ×* psphere m))) : by exact (Hplift_psusp theory n (psphere m ×* psphere m))⁻¹ᵍ ... ≃g HH theory (n + 1) (plift (⅀ (psphere m) ∨ (⅀ (psphere m) ∨ ⅀ (psphere m ∧ psphere m)))) : by exact Hplift_isomorphism theory (n + 1) (susp_product (psphere m) (psphere m)) ... ≃g HH theory (n + 1) (plift (⅀ (psphere m))) ×g HH theory (n + 1) (plift (⅀ (psphere m) ∨ (⅀ (psphere m ∧ psphere m)))) : by exact Hplift_pwedge theory (n + 1) (⅀ (psphere m)) (⅀ (psphere m) ∨ (⅀ (psphere m ∧ psphere m))) ... ≃g HH theory n (plift (psphere m)) ×g (HH theory n (plift (psphere m)) ×g HH theory n (plift (psphere (m + m)))) : by exact product_isomorphism (Hplift_psusp theory n (psphere m)) (calc HH theory (n + 1) (plift (⅀ (psphere m) ∨ (⅀ (psphere m ∧ psphere m)))) ≃g HH theory (n + 1) (plift (⅀ (psphere m))) ×g HH theory (n + 1) (plift (⅀ (psphere m ∧ psphere m))) : by exact Hplift_pwedge theory (n + 1) (⅀ (psphere m)) (⅀ (psphere m ∧ psphere m)) ... ≃g HH theory n (plift (psphere m)) ×g HH theory n (plift (psphere (m + m))) : by exact product_isomorphism (Hplift_psusp theory n (psphere m)) (Hplift_psusp theory n (psphere m ∧ psphere m) ⬝g Hplift_isomorphism theory n (sphere_smash_sphere m m))) end end homology