/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn, Egbert Rijke Constructions with groups -/ import .quotient_group .free_commutative_group open eq algebra is_trunc set_quotient relation sigma prod sum list trunc function equiv sigma.ops namespace group section parameters {I : Type} [is_set I] (Y : I → AbGroup) variables {A' : AbGroup} {Y' : I → AbGroup} definition dirsum_carrier : AbGroup := free_ab_group (Σi, Y i) local abbreviation ι [constructor] := @free_ab_group_inclusion inductive dirsum_rel : dirsum_carrier → Type := | rmk : Πi y₁ y₂, dirsum_rel (ι ⟨i, y₁⟩ * ι ⟨i, y₂⟩ * (ι ⟨i, y₁ * y₂⟩)⁻¹) definition dirsum : AbGroup := quotient_ab_group_gen dirsum_carrier (λg, ∥dirsum_rel g∥) -- definition dirsum_carrier_incl [constructor] (i : I) : Y i →g dirsum_carrier := definition dirsum_incl [constructor] (i : I) : Y i →g dirsum := homomorphism.mk (λy, class_of (ι ⟨i, y⟩)) begin intro g h, symmetry, apply gqg_eq_of_rel, apply tr, apply dirsum_rel.rmk end parameter {Y} definition dirsum.rec {P : dirsum → Type} [H : Πg, is_prop (P g)] (h₁ : Πi (y : Y i), P (dirsum_incl i y)) (h₂ : P 1) (h₃ : Πg h, P g → P h → P (g * h)) : Πg, P g := begin refine @set_quotient.rec_prop _ _ _ H _, refine @set_quotient.rec_prop _ _ _ (λx, !H) _, esimp, intro l, induction l with s l ih, exact h₂, induction s with v v, induction v with i y, exact h₃ _ _ (h₁ i y) ih, induction v with i y, refine h₃ (gqg_map _ _ (class_of [inr ⟨i, y⟩])) _ _ ih, refine transport P _ (h₁ i y⁻¹), refine _ ⬝ !one_mul, refine _ ⬝ ap (λx, mul x _) (to_respect_zero (dirsum_incl i)), apply gqg_eq_of_rel', apply tr, esimp, refine transport dirsum_rel _ (dirsum_rel.rmk i y⁻¹ y), rewrite [mul.left_inv, mul.assoc], end definition dirsum_homotopy {φ ψ : dirsum →g A'} (h : Πi (y : Y i), φ (dirsum_incl i y) = ψ (dirsum_incl i y)) : φ ~ ψ := begin refine dirsum.rec _ _ _, exact h, refine !to_respect_zero ⬝ !to_respect_zero⁻¹, intro g₁ g₂ h₁ h₂, rewrite [* to_respect_mul, h₁, h₂] end definition dirsum_elim_resp_quotient (f : Πi, Y i →g A') (g : dirsum_carrier) (r : ∥dirsum_rel g∥) : free_ab_group_elim (λv, f v.1 v.2) g = 1 := begin induction r with r, induction r, rewrite [to_respect_mul, to_respect_inv, to_respect_mul, ▸*, ↑foldl, *one_mul, to_respect_mul], apply mul.right_inv end definition dirsum_elim [constructor] (f : Πi, Y i →g A') : dirsum →g A' := gqg_elim _ (free_ab_group_elim (λv, f v.1 v.2)) (dirsum_elim_resp_quotient f) definition dirsum_elim_compute (f : Πi, Y i →g A') (i : I) (y : Y i) : dirsum_elim f (dirsum_incl i y) = f i y := begin apply one_mul end definition dirsum_elim_unique (f : Πi, Y i →g A') (k : dirsum →g A') (H : Πi, k ∘g dirsum_incl i ~ f i) : k ~ dirsum_elim f := begin apply gqg_elim_unique, apply free_ab_group_elim_unique, intro x, induction x with i y, exact H i y end end variables {I J : Set} {Y Y' Y'' : I → AbGroup} definition dirsum_functor [constructor] (f : Πi, Y i →g Y' i) : dirsum Y →g dirsum Y' := dirsum_elim (λi, dirsum_incl Y' i ∘g f i) theorem dirsum_functor_compose (f' : Πi, Y' i →g Y'' i) (f : Πi, Y i →g Y' i) : dirsum_functor f' ∘a dirsum_functor f ~ dirsum_functor (λi, f' i ∘a f i) := begin apply dirsum_homotopy, intro i y, reflexivity, end variable (Y) definition dirsum_functor_gid : dirsum_functor (λi, gid (Y i)) ~ gid (dirsum Y) := begin apply dirsum_homotopy, intro i y, reflexivity, end variable {Y} definition dirsum_functor_mul (f f' : Πi, Y i →g Y' i) : homomorphism_mul (dirsum_functor f) (dirsum_functor f') ~ dirsum_functor (λi, homomorphism_mul (f i) (f' i)) := begin apply dirsum_homotopy, intro i y, exact sorry end definition dirsum_functor_homotopy {f f' : Πi, Y i →g Y' i} (p : f ~2 f') : dirsum_functor f ~ dirsum_functor f' := begin apply dirsum_homotopy, intro i y, exact sorry end definition dirsum_functor_left [constructor] (f : J → I) : dirsum (Y ∘ f) →g dirsum Y := dirsum_elim (λj, dirsum_incl Y (f j)) end group