import homotopy.join homotopy.smash open eq equiv trunc function bool join sphere sphere_index sphere.ops prod open pointed sigma smash namespace spherical_fibrations /- classifying type of spherical fibrations -/ definition BG (n : ℕ) : Type₁ := Σ(X : Type₀), ∥ X ≃ S n..-1 ∥ definition pointed_BG [instance] [constructor] (n : ℕ) : pointed (BG n) := pointed.mk ⟨ S n..-1 , tr erfl ⟩ definition pBG [constructor] (n : ℕ) : Type* := pointed.mk' (BG n) definition G (n : ℕ) : Type₁ := pt = pt :> BG n definition G_char (n : ℕ) : G n ≃ (S n..-1 ≃ S n..-1) := sorry definition mirror (n : ℕ) : S n..-1 → G n := begin intro v, apply to_inv (G_char n), exact sorry end /- Can we give a fibration P : S n → Type, P base = F n = Ω(BF n) = (S. n ≃* S. n) and total space sigma P ≃ G (n+1) = Ω(BG (n+1)) = (S n.+1 ≃ S .n+1) Yes, let eval : BG (n+1) → S n be the evaluation map -/ definition S_of_BG (n : ℕ) : Ω(pBG (n+1)) → S n := λ f, f..1 ▸ base definition BG_succ (n : ℕ) : BG n → BG (n+1) := begin intro X, cases X with X p, apply sigma.mk (susp X), induction p with f, apply tr, apply susp.equiv f end /- classifying type of pointed spherical fibrations -/ definition BF (n : ℕ) : Type₁ := Σ(X : Type*), ∥ X ≃* S. n ∥ definition pointed_BF [instance] [constructor] (n : ℕ) : pointed (BF n) := pointed.mk ⟨ S. n , tr pequiv.rfl ⟩ definition pBF [constructor] (n : ℕ) : Type* := pointed.mk' (BF n) definition BF_succ (n : ℕ) : BF n → BF (n+1) := begin intro X, cases X with X p, apply sigma.mk (psusp X), induction p with f, apply tr, apply susp.psusp_equiv f end definition BF_of_BG {n : ℕ} : BG n → BF n := begin intro X, cases X with X p, apply sigma.mk (pointed.MK (susp X) susp.north), induction p with f, apply tr, apply pequiv_of_equiv (susp.equiv f), reflexivity end definition BG_of_BF {n : ℕ} : BF n → BG (n + 1) := begin intro X, cases X with X hX, apply sigma.mk (carrier X), induction hX with fX, apply tr, exact fX end definition BG_mul {n m : ℕ} (X : BG n) (Y : BG m) : BG (n + m) := begin cases X with X pX, cases Y with Y pY, apply sigma.mk (join X Y), induction pX with fX, induction pY with fY, apply tr, rewrite add_sub_one, exact (join.equiv_closed fX fY) ⬝e (join.spheres n..-1 m..-1) end definition BF_mul {n m : ℕ} (X : BF n) (Y : BF m) : BF (n + m) := begin cases X with X hX, cases Y with Y hY, apply sigma.mk (psmash X Y), induction hX with fX, induction hY with fY, apply tr, exact sorry -- needs smash.spheres : psmash (S. n) (S. m) ≃ S. (n + m) end definition BF_of_BG_mul (n m : ℕ) (X : BG n) (Y : BG m) : BF_of_BG (BG_mul X Y) = BF_mul (BF_of_BG X) (BF_of_BG Y) := sorry -- Thom spaces namespace thom variables {X : Type} {n : ℕ} (α : X → BF n) -- the canonical section of an F-object protected definition sec (x : X) : carrier (sigma.pr1 (α x)) := Point _ open pushout sigma definition thom_space : Type := pushout (λx : X, ⟨x , thom.sec α x⟩) (const X unit.star) end thom /- Things to do: - Orientability and orientations * Thom class u ∈ ~Hⁿ(Tξ) * eventually prove Thom-Isomorphism (Rudyak IV.5.7) - define BG∞ and BF∞ as colimits of BG n and BF n - Ω(BF n) = ΩⁿSⁿ₁ + ΩⁿSⁿ₋₁ (self-maps of degree ±1) - succ_BF n is (n - 2) connected (from Freudenthal) - pfiber (BG_of_BF n) ≃* S. n - π₁(BF n)=π₁(BG n)=ℤ/2ℤ - double covers BSG and BSF - O : BF n → BG 1 = Σ(A : Type), ∥ A = bool ∥ - BSG n = sigma O - π₁(BSG n)=π₁(BSF n)=O - BSO(n), - find BF' n : Type₀ with BF' n ≃ BF n etc. - canonical bundle γₙ : ℝP(n) → ℝP∞=BO(1) → Type₀ prove T(γₙ) = ℝP(n+1) - BG∞ = BF∞ (in fact = BGL₁(S), the group of units of the sphere spectrum) - clutching construction: any f : S n → SG(n) gives S n.+1 → BSG(n) (mut.mut. for O(n),SO(n),etc.) - all bundles on S 3 are trivial, incl. tangent bundle - Adams' result on vector fields on spheres: there are maximally ρ(n)-1 indep.sections of the tangent bundle of S (n-1) where ρ(n) is the n'th Radon-Hurwitz number.→ -/ -- tangent bundle on S 2: namespace two_sphere definition tau : S 2 → BG 2 := begin intro v, induction v with x, do 2 exact pt, exact sorry end end two_sphere end spherical_fibrations