/- Copyright (c) 2016 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn Eilenberg MacLane spaces -/ import homotopy.EM .spectrum open eq is_equiv equiv is_conn is_trunc unit function pointed nat group algebra trunc trunc_index fiber prod pointed susp EM.ops namespace EM /- Functorial action of Eilenberg-Maclane spaces -/ definition pEM1_functor [constructor] {G H : Group} (φ : G →g H) : pEM1 G →* pEM1 H := begin fconstructor, { intro g, induction g, { exact base }, { exact pth (φ g) }, { exact ap pth (respect_mul φ g h) ⬝ resp_mul (φ g) (φ h) }}, { reflexivity } end definition EMadd1_functor [constructor] {G H : CommGroup} (φ : G →g H) (n : ℕ) : EMadd1 G n →* EMadd1 H n := begin apply ptrunc_functor, apply iterate_psusp_functor, apply pEM1_functor, exact φ end definition EM_functor {G H : CommGroup} (φ : G →g H) (n : ℕ) : K G n →* K H n := begin cases n with n, { exact pmap_of_homomorphism φ }, { exact EMadd1_functor φ n } end /- Equivalence of Groups and pointed connected 1-truncated types -/ definition pEM1_pequiv_ptruncconntype (X : 1-Type*[0]) : pEM1 (π₁ X) ≃* X := pEM1_pequiv_type definition Group_equiv_ptruncconntype [constructor] : Group ≃ 1-Type*[0] := equiv.MK (λG, ptruncconntype.mk (pEM1 G) _ pt !is_conn_pEM1) (λX, π₁ X) begin intro X, apply ptruncconntype_eq, esimp, exact pEM1_pequiv_type end begin intro G, apply eq_of_isomorphism, apply fundamental_group_pEM1 end /- Higher EM-spaces -/ /- K(G, 2) is unique (see below for general case) -/ definition loopn_EMadd1 (G : CommGroup) (n : ℕ) : Ω[succ n] (EMadd1 G n) ≃* pType_of_Group G := begin refine _ ⬝e* loop_pEM1 G, cases n with n, { refine !loop_ptrunc_pequiv ⬝e* _, refine ptrunc_pequiv _ _ _, apply is_trunc_eq, apply is_trunc_EM1}, induction n with n IH, { exact loop_pequiv_loop (loop_EM2 G)}, refine _ ⬝e* IH, refine !homotopy_group_pequiv_loop_ptrunc⁻¹ᵉ* ⬝e* _ ⬝e* !homotopy_group_pequiv_loop_ptrunc, apply iterate_psusp_stability_pequiv, rexact add_mul_le_mul_add n 1 1 end definition EM2_map [unfold 7] {G : CommGroup} {X : Type*} (e : Ω[2] X ≃ G) (r : Π(p q : Ω[2] X), e (@concat (Ω X) idp idp idp p q) = e p * e q) [is_conn 1 X] [is_trunc 2 X] : EMadd1 G 1 → X := begin change trunc 2 (susp (EM1 G)) → X, intro x, induction x with x, induction x with x, { exact pt}, { exact pt}, { change carrier (Ω X), refine EM1_map e r x} end definition pEM2_pmap [constructor] {G : CommGroup} {X : Type*} (e : Ω[2] X ≃ G) (r : Π(p q : Ω[2] X), e (@concat (Ω X) idp idp idp p q) = e p * e q) [is_conn 1 X] [is_trunc 2 X] : EMadd1 G 1 →* X := pmap.mk (EM2_map e r) idp definition loop_pEM2_pmap {G : CommGroup} {X : Type*} (e : Ω[2] X ≃ G) (r : Π(p q : Ω[2] X), e (@concat (Ω X) idp idp idp p q) = e p * e q) [is_conn 1 X] [is_trunc 2 X] : Ω→[2](pEM2_pmap e r) ~ e⁻¹ᵉ ∘ loopn_EMadd1 G 1 := begin exact sorry end -- TODO: make arguments in trivial_homotopy_group_of_is_trunc implicit attribute is_conn_EMadd1 is_trunc_EMadd1 [instance] definition pEM2_pequiv' {G : CommGroup} {X : Type*} (e : Ω[2] X ≃ G) (r : Π(p q : Ω[2] X), e (@concat (Ω X) idp idp idp p q) = e p * e q) [is_conn 1 X] [is_trunc 2 X] : EMadd1 G 1 ≃* X := begin apply pequiv_of_pmap (pEM2_pmap e r), have is_conn 0 (EMadd1 G 1), from !is_conn_of_is_conn_succ, have is_trunc 2 (EMadd1 G 1), from !is_trunc_EMadd1, refine whitehead_principle_pointed 2 _ _, intro k, apply @nat.lt_by_cases k 2: intro H, { apply @is_equiv_of_is_contr, do 2 exact trivial_homotopy_group_of_is_conn _ (le_of_lt_succ H)}, { cases H, esimp, apply is_equiv_trunc_functor, esimp, apply is_equiv.homotopy_closed, rotate 1, { symmetry, exact loop_pEM2_pmap _ _}, apply is_equiv_compose, apply pequiv.to_is_equiv, apply to_is_equiv}, { apply @is_equiv_of_is_contr, exact trivial_homotopy_group_of_is_trunc _ H, apply @trivial_homotopy_group_of_is_trunc, rotate 1, exact H, exact _inst_2} end definition pEM2_pequiv {G : CommGroup} {X : Type*} (e : πg[1+1] X ≃g G) [is_conn 1 X] [is_trunc 2 X] : EMadd1 G 1 ≃* X := begin have is_set (Ω[2] X), from !is_trunc_eq, apply pEM2_pequiv' (!trunc_equiv⁻¹ᵉ ⬝e equiv_of_isomorphism e), intro p q, esimp, exact to_respect_mul e (tr p) (tr q) end -- general case definition EMadd1_map [unfold 8] {G : CommGroup} {X : Type*} {n : ℕ} (e : Ω[succ n] X ≃ G) (r : Π(p q : Ω (Ω[n] X)), e (p ⬝ q) = e p * e q) [H1 : is_conn n X] [H2 : is_trunc (n.+1) X] : EMadd1 G n → X := begin revert X e r H1 H2, induction n with n f: intro X e r H1 H2, { change trunc 1 (EM1 G) → X, intro x, induction x with x, exact EM1_map e r x}, change trunc (n.+2) (susp (iterate_psusp n (pEM1 G))) → X, intro x, induction x with x, induction x with x, { exact pt}, { exact pt}, change carrier (Ω X), refine f _ _ _ _ _ (tr x), { refine _⁻¹ᵉ ⬝e e, apply equiv_of_pequiv, apply loopn_succ_in}, exact abstract begin intro p q, refine _ ⬝ !r, apply ap e, esimp, apply inv_eq_of_eq, refine _⁻¹ ⬝ !loopn_succ_in_con⁻¹, exact to_right_inv (loopn_succ_in X (succ n)) p ◾ to_right_inv (loopn_succ_in X (succ n)) q end end end definition pEMadd1_pmap [constructor] {G : CommGroup} {X : Type*} {n : ℕ} (e : Ω[succ n] X ≃ G) (r : Π(p q : Ω[succ n] X), e (@concat (Ω[n] X) pt pt pt p q) = e p * e q) [H1 : is_conn n X] [H2 : is_trunc (n.+1) X] : EMadd1 G n →* X := pmap.mk (EMadd1_map e r) begin cases n with n: reflexivity end definition loop_pEMadd1_pmap {G : CommGroup} {X : Type*} {n : ℕ} (e : Ω[succ n] X ≃ G) (r : Π(p q : Ω[succ n] X), e (@concat (Ω[n] X) pt pt pt p q) = e p * e q) [H1 : is_conn n X] [H2 : is_trunc (n.+1) X] : Ω→[succ n](pEMadd1_pmap e r) ~ e⁻¹ᵉ ∘ loopn_EMadd1 G n := begin apply homotopy_of_inv_homotopy_pre (loopn_EMadd1 G n), intro g, esimp at *, revert X e r H1 H2, induction n with n IH: intro X e r H1 H2, { refine !idp_con ⬝ _, refine !ap_compose'⁻¹ ⬝ _, esimp, apply elim_pth}, { replace (succ (succ n)) with ((succ n) + 1), rewrite [apn_succ], exact sorry} --exact !idp_con ⬝ !elim_pth end -- definition is_conn_of_le (n : ℕ₋₂) (A : Type) [is_conn (n.+1) A] : -- is_conn n A := -- is_trunc_trunc_of_le A -2 (trunc_index.self_le_succ n) -- attribute is_conn_EMadd1 is_trunc_EMadd1 [instance] definition pEMadd1_pequiv' {G : CommGroup} {X : Type*} {n : ℕ} (e : Ω[succ n] X ≃ G) (r : Π(p q : Ω[succ n] X), e (@concat (Ω[n] X) pt pt pt p q) = e p * e q) [H1 : is_conn n X] [H2 : is_trunc (n.+1) X] : EMadd1 G n ≃* X := begin apply pequiv_of_pmap (pEMadd1_pmap e r), have is_conn 0 (EMadd1 G n), from is_conn_of_le _ (zero_le_of_nat n), have is_trunc (n.+1) (EMadd1 G n), from !is_trunc_EMadd1, refine whitehead_principle_pointed (n.+1) _ _, intro k, apply @nat.lt_by_cases k (succ n): intro H, { apply @is_equiv_of_is_contr, do 2 exact trivial_homotopy_group_of_is_conn _ (le_of_lt_succ H)}, { cases H, esimp, apply is_equiv_trunc_functor, esimp, apply is_equiv.homotopy_closed, rotate 1, { symmetry, exact loop_pEMadd1_pmap _ _}, apply is_equiv_compose, apply pequiv.to_is_equiv}, { apply @is_equiv_of_is_contr, do 2 exact trivial_homotopy_group_of_is_trunc _ H} end definition pEMadd1_pequiv {G : CommGroup} {X : Type*} {n : ℕ} (e : πg[n+1] X ≃g G) [H1 : is_conn n X] [H2 : is_trunc (n.+1) X] : EMadd1 G n ≃* X := begin have is_set (Ω[succ n] X), from !is_set_loopn, apply pEMadd1_pequiv' (!trunc_equiv⁻¹ᵉ ⬝e equiv_of_isomorphism e), intro p q, esimp, exact to_respect_mul e (tr p) (tr q) end definition EM_pequiv_succ {G : CommGroup} {X : Type*} {n : ℕ} (e : πg[n+1] X ≃g G) [H1 : is_conn n X] [H2 : is_trunc (n.+1) X] : EM G (succ n) ≃* X := pEMadd1_pequiv e definition EM_pequiv_zero {G : CommGroup} {X : Type*} (e : X ≃* pType_of_Group G) : EM G 0 ≃* X := proof e⁻¹ᵉ* qed definition EM_spectrum /-[constructor]-/ (G : CommGroup) : spectrum := spectrum.Mk (K G) (λn, (loop_EM G n)⁻¹ᵉ*) /- uniqueness of K(G,n), method 2: -/ -- definition freudenthal_homotopy_group_pequiv (A : Type*) {n k : ℕ} [is_conn n A] (H : k ≤ 2 * n) -- : π*[k + 1] (psusp A) ≃* π*[k] A := -- calc -- π*[k + 1] (psusp A) ≃* π*[k] (Ω (psusp A)) : pequiv_of_eq (homotopy_group_succ_in (psusp A) k) -- ... ≃* Ω[k] (ptrunc k (Ω (psusp A))) : homotopy_group_pequiv_loop_ptrunc k (Ω (psusp A)) -- ... ≃* Ω[k] (ptrunc k A) : loopn_pequiv_loopn k (freudenthal_pequiv A H) -- ... ≃* π*[k] A : (homotopy_group_pequiv_loop_ptrunc k A)⁻¹ᵉ* definition iterate_psusp_succ_pequiv (n : ℕ) (A : Type*) : iterate_psusp (succ n) A ≃* iterate_psusp n (psusp A) := begin induction n with n IH, { reflexivity}, { exact psusp_equiv IH} end definition is_conn_psusp [instance] (n : trunc_index) (A : Type*) [H : is_conn n A] : is_conn (n .+1) (psusp A) := is_conn_susp n A definition iterated_freudenthal_pequiv (A : Type*) {n k m : ℕ} [HA : is_conn n A] (H : k ≤ 2 * n) : ptrunc k A ≃* ptrunc k (Ω[m] (iterate_psusp m A)) := begin revert A n k HA H, induction m with m IH: intro A n k HA H, { reflexivity}, { have H2 : succ k ≤ 2 * succ n, from calc succ k ≤ succ (2 * n) : succ_le_succ H ... ≤ 2 * succ n : self_le_succ, exact calc ptrunc k A ≃* ptrunc k (Ω (psusp A)) : freudenthal_pequiv A H ... ≃* Ω (ptrunc (succ k) (psusp A)) : loop_ptrunc_pequiv ... ≃* Ω (ptrunc (succ k) (Ω[m] (iterate_psusp m (psusp A)))) : loop_pequiv_loop (IH (psusp A) (succ n) (succ k) _ H2) ... ≃* ptrunc k (Ω[succ m] (iterate_psusp m (psusp A))) : loop_ptrunc_pequiv ... ≃* ptrunc k (Ω[succ m] (iterate_psusp (succ m) A)) : ptrunc_pequiv_ptrunc _ (loopn_pequiv_loopn _ !iterate_psusp_succ_pequiv)} end definition pmap_eq_of_phomotopy {A B : Type*} {f g : A →* B} (p : f ~* g) : f = g := pmap_eq (to_homotopy p) (to_homotopy_pt p)⁻¹ definition pmap_equiv_pmap_right {A B : Type*} (C : Type*) (f : A ≃* B) : C →* A ≃ C →* B := begin fapply equiv.MK, { exact pcompose f}, { exact pcompose f⁻¹ᵉ*}, { intro f, apply pmap_eq_of_phomotopy, exact !passoc⁻¹* ⬝* pwhisker_right _ !pright_inv ⬝* !pid_pcompose}, { intro f, apply pmap_eq_of_phomotopy, exact !passoc⁻¹* ⬝* pwhisker_right _ !pleft_inv ⬝* !pid_pcompose} end definition iterate_psusp_adjoint_loopn [constructor] (X Y : Type*) (n : ℕ) : iterate_psusp n X →* Y ≃ X →* Ω[n] Y := begin revert X Y, induction n with n IH: intro X Y, { reflexivity}, { refine !susp_adjoint_loop ⬝e !IH ⬝e _, apply pmap_equiv_pmap_right, symmetry, apply loopn_succ_in} end end EM -- cohomology ∥ X → K(G,n) ∥ -- reduced cohomology ∥ X →* K(G,n) ∥ -- but we probably want to do this for any spectrum