/- Copyright (c) 2017 Kuen-Bang Hou (Favonia). Released under Apache 2.0 license as described in the file LICENSE. Author: Kuen-Bang Hou (Favonia) -/ import .basic .sphere ..homotopy.susp_product open eq pointed group algebra circle sphere nat equiv susp function sphere homology int lift prod smash namespace homology section parameter (theory : ordinary_homology_theory) open ordinary_homology_theory theorem Hptorus : Π(n : ℤ)(m : ℕ), HH theory n (plift (sphere m ×* sphere m)) ≃g HH theory n (plift (sphere m)) ×g (HH theory n (plift (sphere m)) ×g HH theory n (plift (sphere (m + m)))) := λ n m, calc HH theory n (plift (sphere m ×* sphere m)) ≃g HH theory (n + 1) (plift (⅀ (sphere m ×* sphere m))) : by exact (Hplift_susp theory n (sphere m ×* sphere m))⁻¹ᵍ ... ≃g HH theory (n + 1) (plift (⅀ (sphere m) ∨ (⅀ (sphere m) ∨ ⅀ (sphere m ∧ sphere m)))) : by exact Hplift_isomorphism theory (n + 1) (susp_product (sphere m) (sphere m)) ... ≃g HH theory (n + 1) (plift (⅀ (sphere m))) ×g HH theory (n + 1) (plift (⅀ (sphere m) ∨ (⅀ (sphere m ∧ sphere m)))) : by exact Hplift_wedge theory (n + 1) (⅀ (sphere m)) (⅀ (sphere m) ∨ (⅀ (sphere m ∧ sphere m))) ... ≃g HH theory n (plift (sphere m)) ×g (HH theory n (plift (sphere m)) ×g HH theory n (plift (sphere (m + m)))) : by exact product_isomorphism (Hplift_susp theory n (sphere m)) (calc HH theory (n + 1) (plift (⅀ (sphere m) ∨ (⅀ (sphere m ∧ sphere m)))) ≃g HH theory (n + 1) (plift (⅀ (sphere m))) ×g HH theory (n + 1) (plift (⅀ (sphere m ∧ sphere m))) : by exact Hplift_wedge theory (n + 1) (⅀ (sphere m)) (⅀ (sphere m ∧ sphere m)) ... ≃g HH theory n (plift (sphere m)) ×g HH theory n (plift (sphere (m + m))) : by exact product_isomorphism (Hplift_susp theory n (sphere m)) (Hplift_susp theory n (sphere m ∧ sphere m) ⬝g Hplift_isomorphism theory n (sphere_smash_sphere m m))) end end homology