/- Copyright (c) 2016 Michael Shulman. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Michael Shulman -/ import init.equiv types.nat types.pointed types.int types.pointed2 homotopy.susp types.fiber algebra.homotopy_group types.trunc open eq pointed nat pmap susp phomotopy sigma is_equiv equiv homotopy fiber int algebra trunc trunc_index /--------------------- Basic definitions ---------------------/ /- I gather from looking at other files that I should be using namespaces somehow here, but I don't really understand the conventions for how to use them. -/ structure prespectrum := (deloop : ℕ → Type*) (glue : Πn, (deloop n) →* (Ω (deloop (succ n)))) open prespectrum attribute prespectrum.deloop [coercion] structure is_spectrum [class] (E : prespectrum) := (is_equiv_glue : Πn, is_equiv (glue E n)) open is_spectrum attribute is_equiv_glue [instance] definition equiv_glue (E : prespectrum) [H : is_spectrum E] (n:ℕ) : (E n) ≃* (Ω (E (succ n))) := pequiv_of_pmap (glue E n) (is_equiv_glue E n) structure spectrum := (to_prespectrum : prespectrum) (to_is_spectrum : is_spectrum to_prespectrum) open spectrum attribute spectrum.to_prespectrum [coercion] attribute spectrum.to_is_spectrum [instance] /- Spectrum maps -/ structure smap (E F : prespectrum) := (to_fun : Πn, E n →* F n) (glue_square : Πn, glue F n ∘* to_fun n ~* Ω→ (to_fun (succ n)) ∘* glue E n) open smap infix ` →ₛ `:30 := smap attribute smap.to_fun [coercion] definition scompose {X Y Z : prespectrum} (g : Y →ₛ Z) (f : X →ₛ Y) : X →ₛ Z := smap.mk (λn, g n ∘* f n) (λn, calc glue Z n ∘* to_fun g n ∘* to_fun f n ~* (glue Z n ∘* to_fun g n) ∘* to_fun f n : passoc ... ~* (Ω→(to_fun g (succ n)) ∘* glue Y n) ∘* to_fun f n : pwhisker_right (to_fun f n) (glue_square g n) ... ~* Ω→(to_fun g (succ n)) ∘* (glue Y n ∘* to_fun f n) : passoc ... ~* Ω→(to_fun g (succ n)) ∘* (Ω→ (f (succ n)) ∘* glue X n) : pwhisker_left Ω→(to_fun g (succ n)) (glue_square f n) ... ~* (Ω→(to_fun g (succ n)) ∘* Ω→(f (succ n))) ∘* glue X n : passoc ... ~* Ω→(to_fun g (succ n) ∘* to_fun f (succ n)) ∘* glue X n : pwhisker_right (glue X n) (ap1_compose _ _)) infixr ` ∘ₛ `:60 := scompose /- Suspension prespectra -/ definition psp_suspn : ℕ → Type* → Type* | psp_suspn 0 X := X | psp_suspn (succ n) X := psusp (psp_suspn n X) definition psp_susp_oo (X : Type*) := prespectrum.mk (λn, psp_suspn n X) (λn, loop_susp_unit (psp_suspn n X)) /- Truncations -/ definition inc (n : ℕ) (k : ℕ₋₂) : ℕ₋₂ := nat.rec_on n k (λa, λm, succ m) definition strunc (k : ℕ₋₂) (E : spectrum) : spectrum := spectrum.mk (prespectrum.mk (λn, ptrunc (inc n k) (E n)) (λn, (loop_ptrunc_pequiv (inc n k) (E (succ n)))⁻¹ᵉ* ∘* (ptrunc_pequiv_ptrunc (inc n k) (equiv_glue E n)))) -- typeclass inference is failing me (is_spectrum.mk (λn, @is_equiv_compose _ _ _ _ (loop_ptrunc_pequiv (inc n k) (E (succ n)))⁻¹ᵉ* _ (pequiv.to_is_equiv _))) /--------------------- Homotopy groups ---------------------/ /- A spectrum has homotopy groups indexed by all integers. The naive definition would be match n with | neg_succ_of_nat k := π[0] (E (1+k)) | of_nat k := π[k] (E 0) end but in order to ensure easily that they are all abelian groups, we start shifting out earlier. Since homotopy groups commute appropriately with loop spaces, this is equivalent. -/ definition shomotopy_group [constructor] (n : ℤ) (E : spectrum) : CommGroup := match n with | neg_succ_of_nat k := πag[0+2] (E (3 + k)) | of_nat 0 := πag[0+2] (E 2) | of_nat 1 := πag[0+2] (E 1) | of_nat (succ (succ k)) := πag[k+2] (E 0) end notation `πₛ[`:95 n:0 `] `:0 E:95 := shomotopy_group n E /--------------------- More pointed stuff ---------------------/ /- Most of this stuff should really be in one of the "pointed" files. -/ definition pmap.sigma_char [constructor] {A B : Type*} : (A →* B) ≃ Σ(f : A → B), f pt = pt := begin fapply equiv.mk, { intros f, exact ⟨to_fun f , resp_pt f⟩ }, fapply is_equiv.adjointify, { intros f, cases f with f p, exact pmap.mk f p }, { intros f, cases f with f p, esimp }, { intros f, cases f with f p, esimp } end definition phomotopy.sigma_char [constructor] {A B : Type*} (f g : A →* B) : (f ~* g) ≃ Σ(p : f ~ g), p pt ⬝ resp_pt g = resp_pt f := begin fapply equiv.mk, { intros h, exact ⟨homotopy h , homotopy_pt h⟩ }, fapply is_equiv.adjointify, { intros h, cases h with h p, exact phomotopy.mk h p }, { intros h, cases h with h p, esimp }, { intros h, cases h with h p, esimp } end -- I couldn't find the bundled version of is_equiv_ap anywhere. What should it be named? Apparently equiv.equiv_ap is something different? definition my_equiv_ap {A B : Type} (f : A → B) [H : is_equiv f] (x y : A) : (x = y) ≃ (f x = f y) := equiv.mk (ap f) _ -- should be in types.sigma definition sigma_equiv_sigma_left' [constructor] {A A' : Type} {B : A' → Type} (Hf : A ≃ A') : (Σa, B (Hf a)) ≃ (Σa', B a') := sigma_equiv_sigma Hf (λa, erfl) definition pmap_eq_equiv {A B : Type*} (f g : A →* B) : (f = g) ≃ (f ~* g) := calc (f = g) ≃ pmap.sigma_char f = pmap.sigma_char g : my_equiv_ap pmap.sigma_char f g ... ≃ Σ(p : pmap.to_fun f = pmap.to_fun g), pathover (λh, h pt = pt) (resp_pt f) p (resp_pt g) : sigma_eq_equiv _ _ ... ≃ Σ(p : pmap.to_fun f = pmap.to_fun g), resp_pt f = ap (λh, h pt) p ⬝ resp_pt g : sigma_equiv_sigma_right (λp, pathover_eq_equiv_Fl p (resp_pt f) (resp_pt g)) ... ≃ Σ(p : pmap.to_fun f = pmap.to_fun g), resp_pt f = ap10 p pt ⬝ resp_pt g : sigma_equiv_sigma_right (λp, equiv_eq_closed_right _ (whisker_right (ap_eq_ap10 p _) _)) ... ≃ Σ(p : pmap.to_fun f ~ pmap.to_fun g), resp_pt f = p pt ⬝ resp_pt g : sigma_equiv_sigma_left' eq_equiv_homotopy ... ≃ Σ(p : pmap.to_fun f ~ pmap.to_fun g), p pt ⬝ resp_pt g = resp_pt f : sigma_equiv_sigma_right (λp, eq_equiv_eq_symm _ _) ... ≃ (f ~* g) : phomotopy.sigma_char f g definition loop_pmap_commute (A B : Type*) : Ω(ppmap A B) ≃* (ppmap A (Ω B)) := pequiv_of_equiv (calc Ω(ppmap A B) /- ≃ (pconst A B = pconst A B) : erfl ... -/ ≃ (pconst A B ~* pconst A B) : pmap_eq_equiv _ _ ... ≃ Σ(p : pconst A B ~ pconst A B), p pt ⬝ rfl = rfl : phomotopy.sigma_char ... /- ≃ Σ(f : A → Ω B), f pt = pt : erfl ... -/ ≃ (A →* Ω B) : pmap.sigma_char) (by esimp) definition ppcompose_left {A B C : Type*} (g : B →* C) : ((ppmap A B) →* (ppmap A C)) := pmap.mk (pcompose g) (eq_of_phomotopy (phomotopy.mk (λa, resp_pt g) (idp_con _)⁻¹)) definition is_equiv_ppcompose_left [instance] {A B C : Type*} (g : B →* C) [H : is_equiv g] : is_equiv (@ppcompose_left A B C g) := begin fapply is_equiv.adjointify, { exact (ppcompose_left (pequiv_of_pmap g H)⁻¹ᵉ*) }, { intros f, esimp, apply eq_of_phomotopy, exact calc g ∘* ((pequiv_of_pmap g H)⁻¹ᵉ* ∘* f) ~* (g ∘* (pequiv_of_pmap g H)⁻¹ᵉ*) ∘* f : passoc _ _ _ ... ~* pid _ ∘* f : pwhisker_right f (pright_inv (pequiv_of_pmap g H)) ... ~* f : pid_comp f }, { intros f, esimp, apply eq_of_phomotopy, exact calc (pequiv_of_pmap g H)⁻¹ᵉ* ∘* (g ∘* f) ~* ((pequiv_of_pmap g H)⁻¹ᵉ* ∘* g) ∘* f : passoc _ _ _ ... ~* pid _ ∘* f : pwhisker_right f (pleft_inv (pequiv_of_pmap g H)) ... ~* f : pid_comp f } end definition is_equiv_pcompose [instance] {A B C : Type*} (g : B →* C) (f : A →* B) [Hg : is_equiv g] [Hf : is_equiv f] : is_equiv (g ∘* f) := (is_equiv_compose f g) /------------------------------- Cotensor of spectra by types -------------------------------/ definition psp_cotensor (A : Type*) (B : prespectrum) : prespectrum := prespectrum.mk (λn, ppmap A (B n)) (λn, (pequiv.to_pmap (loop_pmap_commute A (B (succ n)))⁻¹ᵉ*) ∘* (ppcompose_left (glue B n))) definition is_spectrum_cotensor [instance] (A : Type*) (B : prespectrum) [H : is_spectrum B] : is_spectrum (psp_cotensor A B) := begin apply is_spectrum.mk, intros n, unfold psp_cotensor, esimp, -- typeclass inference is failing me... refine (@is_equiv_compose _ _ _ _ ((pequiv.to_fun (loop_pmap_commute A (B (succ n)))⁻¹ᵉ*)) _ _), apply is_equiv_ppcompose_left, apply pequiv.to_is_equiv end definition sp_cotensor (A : Type*) (B : spectrum) : spectrum := spectrum.mk (psp_cotensor A B) _ /- Mapping spectra -/ /- Fibers and long exact sequences -/ /- Spectrification -/ /- Tensor by spaces -/ /- Smash product of spectra -/ /- Cofibers and stability -/