/- Spectral sequences - basic properties of spectral sequences - currently, we only construct an spectral sequence from an exact couple -/ -- Author: Floris van Doorn import .exact_couple open algebra is_trunc left_module is_equiv equiv eq function nat sigma set_quotient group left_module group int prod prod.ops open exact_couple (Z2) structure convergent_spectral_sequence.{u v w} {R : Ring} (E' : ℤ → ℤ → LeftModule.{u v} R) (Dinf : ℤ → LeftModule.{u w} R) : Type.{max u (v+1) (w+1)} := (E : ℕ → graded_module.{u 0 v} R Z2) (d : Π(r : ℕ), E r →gm E r) (deg_d : ℕ → Z2) (deg_d_eq0 : Π(r : ℕ), deg (d r) 0 = deg_d r) (α : Π(r : ℕ) (x : Z2), E (r+1) x ≃lm graded_homology (d r) (d r) x) (e : Π(x : Z2), E 0 x ≃lm E' x.1 x.2) (s₀ : Z2 → ℕ) (f : Π{r : ℕ} {x : Z2} (h : s₀ x ≤ r), E (s₀ x) x ≃lm E r x) (lb : ℤ → ℤ) (HDinf : Π(n : ℤ), is_built_from (Dinf n) (λ(k : ℕ), (λx, E (s₀ x) x) (n - (k + lb n), k + lb n))) definition convergent_spectral_sequence_g [reducible] (E' : ℤ → ℤ → AbGroup) (Dinf : ℤ → AbGroup) : Type := convergent_spectral_sequence (λn s, LeftModule_int_of_AbGroup (E' n s)) (λn, LeftModule_int_of_AbGroup (Dinf n)) section exact_couple open exact_couple exact_couple.exact_couple exact_couple.convergent_exact_couple exact_couple.convergence_theorem exact_couple.derived_couple definition convergent_spectral_sequence_of_exact_couple {R : Ring} {E' : ℤ → ℤ → LeftModule R} {Dinf : ℤ → LeftModule R} (c : convergent_exact_couple E' Dinf) (st_eq : Πn, (st c n).1 + (st c n).2 = n) (deg_i_eq : deg (i (X c)) 0 = (- 1, 1)) : convergent_spectral_sequence E' Dinf := convergent_spectral_sequence.mk (λr, E (page (X c) r)) (λr, d (page (X c) r)) (deg_d c) (deg_d_eq0 c) (λr ns, by reflexivity) (e c) (B3 (HH c)) (λr ns Hr, Einfstable (HH c) Hr idp) (λn, (st c n).2) begin intro n, refine is_built_from_isomorphism (f c n) _ (is_built_from_infpage (HH c) (st c n) (HB c n)), intro p, apply isomorphism_of_eq, apply ap (λx, E (page (X c) (B3 (HH c) x)) x), induction p with p IH, { exact !prod.eta⁻¹ ⬝ prod_eq (eq_sub_of_add_eq (ap (add _) !zero_add ⬝ st_eq n)) (zero_add (st c n).2)⁻¹ }, { assert H1 : Π(a : ℤ), n - (p + a) - 1 = n - (succ p + a), exact λa, !sub_add_eq_sub_sub⁻¹ ⬝ ap (sub n) (add_comm_middle p a 1 ⬝ proof idp qed), assert H2 : Π(a : ℤ), p + a + 1 = succ p + a, exact λa, add_comm_middle p a 1, refine ap (deg (i (X c))) IH ⬝ !deg_eq ⬝ ap (add _) deg_i_eq ⬝ prod_eq !H1 !H2 } end end exact_couple namespace spectral_sequence open convergent_spectral_sequence variables {R : Ring} {E' : ℤ → ℤ → LeftModule R} {Dinf : ℤ → LeftModule R} (c : convergent_spectral_sequence E' Dinf) -- (E : ℕ → graded_module.{u 0 v} R Z2) -- (d : Π(r : ℕ), E r →gm E r) -- (deg_d : ℕ → Z2) -- (deg_d_eq0 : Π(r : ℕ), deg (d r) 0 = deg_d r) -- (α : Π(r : ℕ) (x : Z2), E (r+1) x ≃lm graded_homology (d r) (d r) x) -- (e : Π(x : Z2), E 0 x ≃lm E' x.1 x.2) -- (s₀ : Z2 → ℕ) -- (f : Π{r : ℕ} {x : Z2} (h : s₀ x ≤ r), E (s₀ x) x ≃lm E r x) -- (lb : ℤ → ℤ) -- (HDinf : Π(n : ℤ), is_built_from (Dinf n) -- (λ(k : ℕ), (λx, E (s₀ x) x) (n - (k + lb n), k + lb n))) definition Einf (x : Z2) : LeftModule R := E c (s₀ c x) x definition is_contr_E_succ (r : ℕ) (x : Z2) (h : is_contr (E c r x)) : is_contr (E c (r+1) x) := is_contr_equiv_closed_rev (equiv_of_isomorphism (α c r x)) (is_contr_homology _ _ _) definition deg_d_eq (r : ℕ) (x : Z2) : deg (d c r) x = x + deg_d c r := !deg_eq ⬝ ap (add _) !deg_d_eq0 definition deg_d_inv_eq (r : ℕ) (x : Z2) : (deg (d c r))⁻¹ᵉ x = x - deg_d c r := inv_eq_of_eq (!deg_d_eq ⬝ !neg_add_cancel_right)⁻¹ definition is_contr_E_of_le {r₁ r₂ : ℕ} (H : r₁ ≤ r₂) (x : Z2) (h : is_contr (E c r₁ x)) : is_contr (E c r₂ x) := begin induction H with r₂ H IH, { exact h }, { apply is_contr_E_succ, exact IH } end definition is_contr_E (r : ℕ) (x : Z2) (h : is_contr (E' x.1 x.2)) : is_contr (E c r x) := is_contr_E_of_le c !zero_le x (is_contr_equiv_closed_rev (equiv_of_isomorphism (e c x)) h) definition is_contr_Einf (x : Z2) (h : is_contr (E' x.1 x.2)) : is_contr (Einf c x) := is_contr_E c (s₀ c x) x h definition E_isomorphism {r₁ r₂ : ℕ} {ns : Z2} (H : r₁ ≤ r₂) (H1 : Π⦃r⦄, r₁ ≤ r → r < r₂ → is_contr (E c r (ns - deg_d c r))) (H2 : Π⦃r⦄, r₁ ≤ r → r < r₂ → is_contr (E c r (ns + deg_d c r))) : E c r₂ ns ≃lm E c r₁ ns := begin assert H3 : Π⦃r⦄, r₁ ≤ r → r ≤ r₂ → E c r ns ≃lm E c r₁ ns, { intro r Hr₁ Hr₂, induction Hr₁ with r Hr₁ IH, reflexivity, let Hr₂' := le_of_succ_le Hr₂, refine α c r ns ⬝lm homology_isomorphism _ _ _ _ ⬝lm IH Hr₂', exact is_contr_equiv_closed (equiv_ap (E c r) !deg_d_inv_eq⁻¹) (H1 Hr₁ Hr₂), exact is_contr_equiv_closed (equiv_ap (E c r) !deg_d_eq⁻¹) (H2 Hr₁ Hr₂) }, exact H3 H (le.refl _) end definition E_isomorphism0 {r : ℕ} {n s : ℤ} (H1 : Πr', r' < r → is_contr (E' (n - (deg_d c r').1) (s - (deg_d c r').2))) (H2 : Πr', r' < r → is_contr (E' (n + (deg_d c r').1) (s + (deg_d c r').2))) : E c r (n, s) ≃lm E' n s := E_isomorphism c !zero_le (λr' Hr₁ Hr₂, is_contr_E c r' _ (H1 r' Hr₂)) (λr' Hr₁ Hr₂, is_contr_E c r' _ (H2 r' Hr₂)) ⬝lm e c (n, s) definition Einf_isomorphism (r₁ : ℕ) {ns : Z2} (H1 : Π⦃r⦄, r₁ ≤ r → is_contr (E c r (ns - deg_d c r))) (H2 : Π⦃r⦄, r₁ ≤ r → is_contr (E c r (ns + deg_d c r))) : Einf c ns ≃lm E c r₁ ns := begin cases le.total r₁ (s₀ c ns) with Hr Hr, exact E_isomorphism c Hr (λr Hr₁ Hr₂, H1 Hr₁) (λr Hr₁ Hr₂, H2 Hr₁), exact f c Hr end definition Einf_isomorphism0 {n s : ℤ} (H1 : Πr, is_contr (E' (n - (deg_d c r).1) (s - (deg_d c r).2))) (H2 : Πr, is_contr (E' (n + (deg_d c r).1) (s + (deg_d c r).2))) : Einf c (n, s) ≃lm E' n s := E_isomorphism0 c (λr Hr, H1 r) (λr Hr, H2 r) end spectral_sequence