/- Copyright (c) 2017 Floris van Doorn and Ulrik Buchholtz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn, Ulrik Buchholtz Truncatedness and truncation of spectra -/ import .basic open int trunc eq is_trunc lift unit pointed equiv is_equiv algebra EM namespace spectrum /- interactions of ptrunc / trunc with maxm2 -/ definition ptrunc_maxm2_change_int {k l : ℤ} (p : k = l) (X : Type*) : ptrunc (maxm2 k) X ≃* ptrunc (maxm2 l) X := ptrunc_change_index (ap maxm2 p) X definition is_trunc_maxm2_change_int {k l : ℤ} (X : pType) (p : k = l) : is_trunc (maxm2 k) X → is_trunc (maxm2 l) X := by induction p; exact id definition is_trunc_maxm2_loop {k : ℤ} {A : Type*} (H : is_trunc (maxm2 (k+1)) A) : is_trunc (maxm2 k) (Ω A) := begin induction k with k k, apply is_trunc_loop, exact H, apply is_contr_loop, cases k with k, { exact H }, { apply is_trunc_succ, apply is_trunc_succ, exact H } end definition loop_ptrunc_maxm2_pequiv {k : ℤ} {l : ℕ₋₂} (p : maxm2 (k+1) = l) (X : Type*) : Ω (ptrunc l X) ≃* ptrunc (maxm2 k) (Ω X) := begin induction p, induction k with k k, { exact loop_ptrunc_pequiv k X }, { refine pequiv_of_is_contr _ _ _ !is_trunc_trunc, apply is_contr_loop, cases k with k, { change is_set (trunc 0 X), apply _ }, { change is_set (trunc -2 X), apply _ }} end definition loop_ptrunc_maxm2_pequiv_ptrunc_elim' {k : ℤ} {l : ℕ₋₂} (p : maxm2 (k+1) = l) {A B : Type*} (f : A →* B) {H : is_trunc l B} : Ω→ (ptrunc.elim l f) ∘* (loop_ptrunc_maxm2_pequiv p A)⁻¹ᵉ* ~* @ptrunc.elim (maxm2 k) _ _ (is_trunc_maxm2_loop (is_trunc_of_eq p⁻¹ H)) (Ω→ f) := begin induction p, induction k with k k, { refine pwhisker_right _ (ap1_phomotopy _) ⬝* @(ap1_ptrunc_elim k f) H, apply ptrunc_elim_phomotopy2, reflexivity }, { apply phomotopy_of_is_contr_cod_pmap, exact is_trunc_maxm2_loop H } end definition loop_ptrunc_maxm2_pequiv_ptrunc_elim {k : ℤ} {l : ℕ₋₂} (p : maxm2 (k+1) = l) {A B : Type*} (f : A →* B) {H1 : is_trunc ((maxm2 k).+1) B } {H2 : is_trunc l B} : Ω→ (ptrunc.elim l f) ∘* (loop_ptrunc_maxm2_pequiv p A)⁻¹ᵉ* ~* ptrunc.elim (maxm2 k) (Ω→ f) := begin induction p, induction k with k k: esimp at H1, { refine pwhisker_right _ (ap1_phomotopy _) ⬝* ap1_ptrunc_elim k f, apply ptrunc_elim_phomotopy2, reflexivity }, { apply phomotopy_of_is_contr_cod } end definition loop_ptrunc_maxm2_pequiv_ptr {k : ℤ} {l : ℕ₋₂} (p : maxm2 (k+1) = l) (A : Type*) : Ω→ (ptr l A) ~* (loop_ptrunc_maxm2_pequiv p A)⁻¹ᵉ* ∘* ptr (maxm2 k) (Ω A) := begin induction p, induction k with k k, { exact ap1_ptr k A }, { apply phomotopy_pinv_left_of_phomotopy, apply phomotopy_of_is_contr_cod_pmap, apply is_trunc_trunc } end definition is_trunc_of_is_trunc_maxm2 (k : ℤ) (X : Type) : is_trunc (maxm2 k) X → is_trunc (max0 k) X := λ H, @is_trunc_of_le X _ _ (maxm2_le_maxm0 k) H definition ptrunc_maxm2_pred {n m : ℤ} (A : Type*) (p : n - 1 = m) : ptrunc (maxm2 m) A ≃* ptrunc (trunc_index.pred (maxm2 n)) A := begin cases n with n, cases n with n, apply pequiv_of_is_contr, induction p, apply is_trunc_trunc, apply is_contr_ptrunc_minus_one, exact ptrunc_change_index (ap maxm2 (p⁻¹ ⬝ !add_sub_cancel)) A, exact ptrunc_change_index (ap maxm2 p⁻¹) A end definition ptrunc_maxm2_pred_nat {n : ℕ} {m l : ℤ} (A : Type*) (p : nat.succ n = l) (q : pred l = m) (r : maxm2 m = trunc_index.pred (maxm2 (nat.succ n))) : @ptrunc_maxm2_pred (nat.succ n) m A (ap pred p ⬝ q) ~* ptrunc_change_index r A := begin have ap maxm2 ((ap pred p ⬝ q)⁻¹ ⬝ add_sub_cancel n 1) = r, from !is_set.elim, induction this, reflexivity end /- truncatedness of spectra -/ definition is_strunc [reducible] (k : ℤ) (E : spectrum) : Type := Π (n : ℤ), is_trunc (maxm2 (k + n)) (E n) definition is_strunc_change_int {k l : ℤ} (E : spectrum) (p : k = l) : is_strunc k E → is_strunc l E := begin induction p, exact id end definition is_strunc_of_le {k l : ℤ} (E : spectrum) (H : k ≤ l) : is_strunc k E → is_strunc l E := begin intro T, intro n, exact is_trunc_of_le (E n) (maxm2_monotone (algebra.add_le_add_right H n)) end definition is_strunc_pequiv_closed {k : ℤ} {E F : spectrum} (H : Πn, E n ≃* F n) (H2 : is_strunc k E) : is_strunc k F := λn, is_trunc_equiv_closed (maxm2 (k + n)) (H n) definition is_strunc_sunit (n : ℤ) : is_strunc n sunit := begin intro k, apply is_trunc_lift, apply is_trunc_unit end open option definition is_strunc_add_point_spectrum {X : Type} {Y : X → spectrum} {s₀ : ℤ} (H : Πx, is_strunc s₀ (Y x)) : Π(x : X₊), is_strunc s₀ (add_point_spectrum Y x) | (some x) := proof H x qed | none := begin intro k, apply is_trunc_lift, apply is_trunc_unit end definition is_strunc_EM_spectrum (G : AbGroup) : is_strunc 0 (EM_spectrum G) := begin intro n, induction n with n n, { -- case ≥ 0 apply is_trunc_maxm2_change_int (EM G n) (zero_add n)⁻¹, apply is_trunc_EM }, { change is_contr (EM_spectrum G (-[1+n])), induction n with n IH, { -- case = -1 apply is_contr_loop, exact is_trunc_EM G 0 }, { -- case < -1 apply is_trunc_loop, apply is_trunc_succ, exact IH }} end definition trivial_shomotopy_group_of_is_strunc (E : spectrum) {n k : ℤ} (K : is_strunc n E) (H : n < k) : is_contr (πₛ[k] E) := let m := n + (2 - k) in have I : m < 2, from calc m = (2 - k) + n : int.add_comm n (2 - k) ... < (2 - k) + k : add_lt_add_left H (2 - k) ... = 2 : sub_add_cancel 2 k, @trivial_homotopy_group_of_is_trunc (E (2 - k)) (max0 m) 2 (is_trunc_of_is_trunc_maxm2 m (E (2 - k)) (K (2 - k))) (nat.succ_le_succ (max0_le_of_le (le_sub_one_of_lt I))) /- truncation of spectra -/ definition strunc [constructor] (k : ℤ) (E : spectrum) : spectrum := spectrum.MK (λ(n : ℤ), ptrunc (maxm2 (k + n)) (E n)) (λ(n : ℤ), ptrunc_pequiv_ptrunc (maxm2 (k + n)) (equiv_glue E n) ⬝e* (loop_ptrunc_maxm2_pequiv (ap maxm2 (add.assoc k n 1)) (E (n+1)))⁻¹ᵉ*) definition strunc_change_int [constructor] {k l : ℤ} (E : spectrum) (p : k = l) : strunc k E →ₛ strunc l E := begin induction p, reflexivity end definition is_strunc_strunc (k : ℤ) (E : spectrum) : is_strunc k (strunc k E) := λ n, is_trunc_trunc (maxm2 (k + n)) (E n) definition is_strunc_strunc_pred (X : spectrum) (k : ℤ) : is_strunc k (strunc (k - 1) X) := λn, @(is_trunc_of_le _ (maxm2_monotone (add_le_add_right (sub_one_le k) n))) !is_strunc_strunc definition is_strunc_strunc_of_is_strunc (k : ℤ) {l : ℤ} {E : spectrum} (H : is_strunc l E) : is_strunc l (strunc k E) := λ n, !is_trunc_trunc_of_is_trunc definition str [constructor] (k : ℤ) (E : spectrum) : E →ₛ strunc k E := smap.mk (λ n, ptr (maxm2 (k + n)) (E n)) abstract begin intro n, apply psquare_of_phomotopy, refine !passoc ⬝* pwhisker_left _ !ptr_natural ⬝* _, refine !passoc⁻¹* ⬝* pwhisker_right _ !loop_ptrunc_maxm2_pequiv_ptr⁻¹*, end end definition strunc_elim [constructor] {k : ℤ} {E F : spectrum} (f : E →ₛ F) (H : is_strunc k F) : strunc k E →ₛ F := smap.mk (λn, ptrunc.elim (maxm2 (k + n)) (f n)) abstract begin intro n, apply psquare_of_phomotopy, symmetry, refine !passoc⁻¹* ⬝* pwhisker_right _ !loop_ptrunc_maxm2_pequiv_ptrunc_elim' ⬝* _, refine @(ptrunc_elim_ptrunc_functor _ _ _) _ ⬝* _, refine _ ⬝* @(ptrunc_elim_pcompose _ _ _) _ _, apply is_trunc_maxm2_loop, refine is_trunc_of_eq _ (H (n+1)), exact ap maxm2 (add.assoc k n 1)⁻¹, apply ptrunc_elim_phomotopy2, apply phomotopy_of_psquare, apply ptranspose, apply smap.glue_square end end definition strunc_functor [constructor] (k : ℤ) {E F : spectrum} (f : E →ₛ F) : strunc k E →ₛ strunc k F := strunc_elim (str k F ∘ₛ f) (is_strunc_strunc k F) /- truncated spectra -/ structure truncspectrum (n : ℤ) := (carrier : spectrum) (struct : is_strunc n carrier) notation n `-spectrum` := truncspectrum n attribute truncspectrum.carrier [coercion] definition genspectrum_of_truncspectrum [coercion] (n : ℤ) : n-spectrum → gen_spectrum +ℤ := λ E, truncspectrum.carrier E /- Comment (by Floris): I think we should really not bundle truncated spectra up, unless we are interested in the type of truncated spectra (e.g. when proving n-spectrum ≃ ...). Properties of truncated a spectrum should just be stated with two assumptions (X : spectrum) (H : is_strunc n X) -/ /- truncatedness of spi and sp_cotensor assuming the domain has a level of connectedness -/ section open is_conn definition is_conn_maxm1_of_maxm2 (A : Type*) (n : ℤ) : is_conn (maxm2 n) A → is_conn (maxm1m1 n).+1 A := begin intro H, induction n with n n, { exact H }, { exact is_conn_minus_one A (tr pt) } end definition is_trunc_maxm2_of_maxm1 (A : Type*) (n : ℤ) : is_trunc (maxm1m1 n).+1 A → is_trunc (maxm2 n) A := begin intro H, induction n with n n, { exact H}, { apply is_contr_of_merely_prop, { exact H }, { exact tr pt } } end variables (A : Type*) (n : ℤ) [H : is_conn (maxm2 n) A] include H definition is_trunc_maxm2_ppi (k l : ℤ) (H3 : l ≤ n+1+k) (P : A → Type*) (H2 : Πa, is_trunc (maxm2 l) (P a)) : is_trunc (maxm2 k) (Π*(a : A), P a) := is_trunc_maxm2_of_maxm1 (Π*(a : A), P a) k (@is_trunc_ppi_of_is_conn A (maxm1m1 n) (is_conn_maxm1_of_maxm2 A n H) (maxm1m1 k) _ (le.trans (maxm2_monotone H3) (maxm2_le n k)) P H2) definition is_strunc_spi_of_is_conn (k l : ℤ) (H3 : l ≤ n+1+k) (P : A → spectrum) (H2 : Πa, is_strunc l (P a)) : is_strunc k (spi A P) := begin intro m, unfold spi, exact is_trunc_maxm2_ppi A n (k+m) _ (le.trans (add_le_add_right H3 _) (le_of_eq (add.assoc (n+1) k m))) (λ a, P a m) (λa, H2 a m) end end definition is_strunc_spi_of_le {A : Type*} (k n : ℤ) (H : n ≤ k) (P : A → spectrum) (H2 : Πa, is_strunc n (P a)) : is_strunc k (spi A P) := begin assert K : n ≤ -[1+ 0] + 1 + k, { krewrite (int.zero_add k), exact H }, { exact @is_strunc_spi_of_is_conn A (-[1+ 0]) (is_conn.is_conn_minus_two A) k _ K P H2 } end definition is_strunc_spi {A : Type*} (n : ℤ) (P : A → spectrum) (H : Πa, is_strunc n (P a)) : is_strunc n (spi A P) := is_strunc_spi_of_le n n !le.refl P H definition is_strunc_sp_cotensor (n : ℤ) (A : Type*) {Y : spectrum} (H : is_strunc n Y) : is_strunc n (sp_cotensor A Y) := is_strunc_pequiv_closed (λn, !pppi_pequiv_ppmap) (is_strunc_spi n (λa, Y) (λa, H)) definition is_strunc_sp_ucotensor (n : ℤ) (A : Type) {Y : spectrum} (H : is_strunc n Y) : is_strunc n (sp_ucotensor A Y) := λk, !pi.is_trunc_arrow end spectrum