/- Copyright (c) 2016 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn -/ import .LES_of_homotopy_groups homotopy.connectedness homotopy.homotopy_group homotopy.join open eq is_trunc pointed is_conn is_equiv fiber equiv trunc nat chain_complex prod fin algebra group trunc_index function join pushout namespace nat open sigma sum definition eq_even_or_eq_odd (n : ℕ) : (Σk, 2 * k = n) ⊎ (Σk, 2 * k + 1 = n) := begin induction n with n IH, { exact inl ⟨0, idp⟩}, { induction IH with H H: induction H with k p: induction p, { exact inr ⟨k, idp⟩}, { refine inl ⟨k+1, idp⟩}} end definition rec_on_even_odd {P : ℕ → Type} (n : ℕ) (H : Πk, P (2 * k)) (H2 : Πk, P (2 * k + 1)) : P n := begin cases eq_even_or_eq_odd n with v v: induction v with k p: induction p, { exact H k}, { exact H2 k} end end nat open nat namespace is_conn local attribute comm_group.to_group [coercion] local attribute is_equiv_tinverse [instance] theorem is_equiv_π_of_is_connected.{u} {A B : pType.{u}} (n k : ℕ) (f : A →* B) [H : is_conn_fun n f] (H2 : k ≤ n) : is_equiv (π→[k] f) := begin induction k using rec_on_even_odd with k: cases k with k, { /- k = 0 -/ change (is_equiv (trunc_functor 0 f)), apply is_equiv_trunc_functor_of_is_conn_fun, refine is_conn_fun_of_le f (zero_le_of_nat n)}, { /- k > 0 even -/ have H2' : 2 * k + 1 ≤ n, from le.trans !self_le_succ H2, exact @is_equiv_of_trivial _ (LES_of_homotopy_groups3 f) _ (is_exact_LES_of_homotopy_groups3 f (k, 5)) (is_exact_LES_of_homotopy_groups3 f (succ k, 0)) (@is_contr_HG_fiber_of_is_connected A B (2 * k + 1) n f H H2') (@is_contr_HG_fiber_of_is_connected A B (2 * succ k) n f H H2) (@pgroup_of_group _ (comm_group_LES_of_homotopy_groups3 f k 0) idp) (@pgroup_of_group _ (comm_group_LES_of_homotopy_groups3 f k 1) idp) (homomorphism.struct (homomorphism_LES_of_homotopy_groups_fun3 f (k, 0)))}, { /- k = 1 -/ exact sorry}, -- need some more facts about anti-homomorphisms { /- k > 1 odd -/ have H2' : 2 * succ k ≤ n, from le.trans !self_le_succ H2, have H3 : is_equiv (π→*[2*(succ k) + 1] f ∘* tinverse), from @is_equiv_of_trivial _ (LES_of_homotopy_groups3 f) _ (is_exact_LES_of_homotopy_groups3 f (succ k, 2)) (is_exact_LES_of_homotopy_groups3 f (succ k, 3)) (@is_contr_HG_fiber_of_is_connected A B (2 * succ k) n f H H2') (@is_contr_HG_fiber_of_is_connected A B (2 * succ k + 1) n f H H2) (@pgroup_of_group _ (comm_group_LES_of_homotopy_groups3 f k 3) idp) (@pgroup_of_group _ (comm_group_LES_of_homotopy_groups3 f k 4) idp) (homomorphism.struct (homomorphism_LES_of_homotopy_groups_fun3 f (k, 3))), exact @(is_equiv.cancel_right tinverse) !is_equiv_tinverse (pmap.to_fun (π→*[2*(succ k) + 1] f)) H3} end theorem is_surjective_π_of_is_connected.{u} {A B : pType.{u}} (n : ℕ) (f : A →* B) [H : is_conn_fun n f] : is_surjective (π→[n + 1] f) := begin induction n using rec_on_even_odd with n, { have H3 : is_surjective (π→*[2*n + 1] f ∘* tinverse), from @is_surjective_of_trivial _ (LES_of_homotopy_groups3 f) _ (is_exact_LES_of_homotopy_groups3 f (n, 2)) (@is_contr_HG_fiber_of_is_connected A B (2 * n) (2 * n) f H !le.refl), exact @(is_surjective_cancel_right (pmap.to_fun (π→*[2*n + 1] f)) tinverse) H3}, { exact @is_surjective_of_trivial _ (LES_of_homotopy_groups3 f) _ (is_exact_LES_of_homotopy_groups3 f (k, 5)) (@is_contr_HG_fiber_of_is_connected A B (2 * k + 1) (2 * k + 1) f H !le.refl)} end /- joins -/ definition join_empty_right [constructor] (A : Type) : join A empty ≃ A := begin fapply equiv.MK, { intro x, induction x with a o a o, { exact a }, { exact empty.elim o }, { exact empty.elim o } }, { exact pushout.inl }, { intro a, reflexivity}, { intro x, induction x with a o a o, { reflexivity }, { exact empty.elim o }, { exact empty.elim o } } end definition natural_square2 {A B X : Type} {f : A → X} {g : B → X} (h : Πa b, f a = g b) {a a' : A} {b b' : B} (p : a = a') (q : b = b') : square (ap f p) (ap g q) (h a b) (h a' b') := by induction p; induction q; exact hrfl section open sphere sphere_index definition add_plus_one_minus_one (n : ℕ₋₁) : n +1+ -1 = n := idp definition add_plus_one_succ (n m : ℕ₋₁) : n +1+ (m.+1) = (n +1+ m).+1 := idp definition minus_one_add_plus_one (n : ℕ₋₁) : -1 +1+ n = n := begin induction n with n IH, reflexivity, exact ap succ IH end definition succ_add_plus_one (n m : ℕ₋₁) : (n.+1) +1+ m = (n +1+ m).+1 := begin induction m with m IH, reflexivity, exact ap succ IH end end end is_conn