/- below are some old tries to compute (A ∧ S¹) directly -/ exit /- smash A S¹ = red_susp A -/ definition red_susp_of_smash_pcircle [unfold 2] (x : smash A S¹*) : red_susp A := begin induction x using smash.elim, { induction b, exact base, exact equator a }, { exact base }, { exact base }, { reflexivity }, { exact circle_elim_constant equator_pt b } end definition smash_pcircle_of_red_susp [unfold 2] (x : red_susp A) : smash A S¹* := begin induction x, { exact pt }, { exact gluel' pt a ⬝ ap (smash.mk a) loop ⬝ gluel' a pt }, { refine !con.right_inv ◾ _ ◾ !con.right_inv, exact ap_is_constant gluer loop ⬝ !con.right_inv } end definition smash_pcircle_of_red_susp_of_smash_pcircle_pt [unfold 3] (a : A) (x : S¹*) : smash_pcircle_of_red_susp (red_susp_of_smash_pcircle (smash.mk a x)) = smash.mk a x := begin induction x, { exact gluel' pt a }, { exact abstract begin apply eq_pathover, refine ap_compose smash_pcircle_of_red_susp _ _ ⬝ph _, refine ap02 _ (elim_loop pt (equator a)) ⬝ !elim_equator ⬝ph _, -- make everything below this a lemma defined by path induction? refine !con_idp⁻¹ ⬝pv _, refine !con.assoc⁻¹ ⬝ph _, apply whisker_bl, apply whisker_lb, apply whisker_tl, apply hrfl end end } end definition concat2o [unfold 10] {A B : Type} {f g h : A → B} {q : f ~ g} {r : g ~ h} {a a' : A} {p : a = a'} (s : q a =[p] q a') (t : r a =[p] r a') : q a ⬝ r a =[p] q a' ⬝ r a' := by induction p; exact idpo definition apd_con_fn [unfold 10] {A B : Type} {f g h : A → B} {q : f ~ g} {r : g ~ h} {a a' : A} (p : a = a') : apd (λa, q a ⬝ r a) p = concat2o (apd q p) (apd r p) := by induction p; reflexivity -- definition apd_con_fn_constant [unfold 10] {A B : Type} {f : A → B} {b b' : B} {q : Πa, f a = b} -- {r : b = b'} {a a' : A} (p : a = a') : -- apd (λa, q a ⬝ r) p = concat2o (apd q p) (pathover_of_eq _ idp) := -- by induction p; reflexivity definition smash_pcircle_pequiv_red [constructor] (A : Type*) : smash A S¹* ≃* red_susp A := begin fapply pequiv_of_equiv, { fapply equiv.MK, { exact red_susp_of_smash_pcircle }, { exact smash_pcircle_of_red_susp }, { exact abstract begin intro x, induction x, { reflexivity }, { apply eq_pathover, apply hdeg_square, refine ap_compose red_susp_of_smash_pcircle _ _ ⬝ ap02 _ !elim_equator ⬝ _ ⬝ !ap_id⁻¹, refine !ap_con ⬝ (!ap_con ⬝ !elim_gluel' ◾ !ap_compose'⁻¹) ◾ !elim_gluel' ⬝ _, esimp, exact !idp_con ⬝ !elim_loop }, { exact sorry } end end }, { intro x, induction x, { exact smash_pcircle_of_red_susp_of_smash_pcircle_pt a b }, { exact gluel pt }, { exact gluer pt }, { apply eq_pathover_id_right, refine ap_compose smash_pcircle_of_red_susp _ _ ⬝ph _, unfold [red_susp_of_smash_pcircle], refine ap02 _ !elim_gluel ⬝ph _, esimp, apply whisker_rt, exact vrfl }, { apply eq_pathover_id_right, refine ap_compose smash_pcircle_of_red_susp _ _ ⬝ph _, unfold [red_susp_of_smash_pcircle], -- not sure why so many implicit arguments are needed here... refine ap02 _ (@smash.elim_gluer A S¹* _ (λa, circle.elim red_susp.base (equator a)) red_susp.base red_susp.base (λa, refl red_susp.base) (circle_elim_constant equator_pt) b) ⬝ph _, apply square_of_eq, induction b, { exact whisker_right _ !con.right_inv }, { apply eq_pathover_dep, refine !apd_con_fn ⬝pho _ ⬝hop !apd_con_fn⁻¹, refine ap (λx, concat2o x _) !rec_loop ⬝pho _ ⬝hop (ap011 concat2o (apd_compose1 (λa b, ap smash_pcircle_of_red_susp b) (circle_elim_constant equator_pt) loop) !apd_constant')⁻¹, exact sorry } }}}, { reflexivity } end /- smash A S¹ = susp A -/ open susp definition psusp_of_smash_pcircle [unfold 2] (x : smash A S¹*) : psusp A := begin induction x using smash.elim, { induction b, exact pt, exact merid a ⬝ (merid pt)⁻¹ }, { exact pt }, { exact pt }, { reflexivity }, { induction b, reflexivity, apply eq_pathover_constant_right, apply hdeg_square, exact !elim_loop ⬝ !con.right_inv } end definition smash_pcircle_of_psusp [unfold 2] (x : psusp A) : smash A S¹* := begin induction x, { exact pt }, { exact pt }, { exact gluel' pt a ⬝ (ap (smash.mk a) loop ⬝ gluel' a pt) }, end -- the definitions below compile, but take a long time to do so and have sorry's in them definition smash_pcircle_of_psusp_of_smash_pcircle_pt [unfold 3] (a : A) (x : S¹*) : smash_pcircle_of_psusp (psusp_of_smash_pcircle (smash.mk a x)) = smash.mk a x := begin induction x, { exact gluel' pt a }, { exact abstract begin apply eq_pathover, refine ap_compose smash_pcircle_of_psusp _ _ ⬝ph _, refine ap02 _ (elim_loop north (merid a ⬝ (merid pt)⁻¹)) ⬝ph _, refine !ap_con ⬝ (!elim_merid ◾ (!ap_inv ⬝ !elim_merid⁻²)) ⬝ph _, -- make everything below this a lemma defined by path induction? exact sorry, -- refine !con_idp⁻¹ ⬝pv _, apply whisker_tl, refine !con.assoc⁻¹ ⬝ph _, -- apply whisker_bl, apply whisker_lb, -- refine !con_idp⁻¹ ⬝pv _, apply whisker_tl, apply hrfl -- refine !con_idp⁻¹ ⬝pv _, apply whisker_tl, -- refine !con.assoc⁻¹ ⬝ph _, apply whisker_bl, apply whisker_lb, apply hrfl -- apply square_of_eq, rewrite [+con.assoc], apply whisker_left, apply whisker_left, -- symmetry, apply con_eq_of_eq_inv_con, esimp, apply con_eq_of_eq_con_inv, -- refine _⁻² ⬝ !con_inv, refine _ ⬝ !con.assoc, -- refine _ ⬝ whisker_right _ !inv_con_cancel_right⁻¹, refine _ ⬝ !con.right_inv⁻¹, -- refine !con.right_inv ◾ _, refine _ ◾ !con.right_inv, -- refine !ap_mk_right ⬝ !con.right_inv end end } end -- definition smash_pcircle_of_psusp_of_smash_pcircle_gluer_base (b : S¹*) -- : square (smash_pcircle_of_psusp_of_smash_pcircle_pt (Point A) b) -- (gluer pt) -- (ap smash_pcircle_of_psusp (ap (λ a, psusp_of_smash_pcircle a) (gluer b))) -- (gluer b) := -- begin -- refine ap02 _ !elim_gluer ⬝ph _, -- induction b, -- { apply square_of_eq, exact whisker_right _ !con.right_inv }, -- { apply square_pathover', exact sorry } -- end exit definition smash_pcircle_pequiv [constructor] (A : Type*) : smash A S¹* ≃* psusp A := begin fapply pequiv_of_equiv, { fapply equiv.MK, { exact psusp_of_smash_pcircle }, { exact smash_pcircle_of_psusp }, { exact abstract begin intro x, induction x, { reflexivity }, { exact merid pt }, { apply eq_pathover_id_right, refine ap_compose psusp_of_smash_pcircle _ _ ⬝ph _, refine ap02 _ !elim_merid ⬝ph _, rewrite [↑gluel', +ap_con, +ap_inv, -ap_compose'], refine (_ ◾ _⁻² ◾ _ ◾ (_ ◾ _⁻²)) ⬝ph _, rotate 5, do 2 (unfold [psusp_of_smash_pcircle]; apply elim_gluel), esimp, apply elim_loop, do 2 (unfold [psusp_of_smash_pcircle]; apply elim_gluel), refine idp_con (merid a ⬝ (merid (Point A))⁻¹) ⬝ph _, apply square_of_eq, refine !idp_con ⬝ _⁻¹, apply inv_con_cancel_right } end end }, { intro x, induction x using smash.rec, { exact smash_pcircle_of_psusp_of_smash_pcircle_pt a b }, { exact gluel pt }, { exact gluer pt }, { apply eq_pathover_id_right, refine ap_compose smash_pcircle_of_psusp _ _ ⬝ph _, unfold [psusp_of_smash_pcircle], refine ap02 _ !elim_gluel ⬝ph _, esimp, apply whisker_rt, exact vrfl }, { apply eq_pathover_id_right, refine ap_compose smash_pcircle_of_psusp _ _ ⬝ph _, unfold [psusp_of_smash_pcircle], refine ap02 _ !elim_gluer ⬝ph _, induction b, { apply square_of_eq, exact whisker_right _ !con.right_inv }, { exact sorry} }}}, { reflexivity } end end smash