/- Graded (left-) R-modules for a ring R. -/ -- Author: Floris van Doorn import .left_module .direct_sum .submodule open algebra eq left_module pointed function equiv is_equiv is_trunc prod group sigma namespace left_module definition graded [reducible] (str : Type) (I : Type) : Type := I → str definition graded_module [reducible] (R : Ring) : Type → Type := graded (LeftModule R) variables {R : Ring} {I : Type} {M M₁ M₂ M₃ : graded_module R I} /- morphisms between graded modules. The definition is unconventional in two ways: (1) The degree is determined by an endofunction instead of a element of I (and in this case we don't need to assume that I is a group). The "standard" degree i corresponds to the endofunction which is addition with i on the right. However, this is more flexible. For example, the composition of two graded module homomorphisms φ₂ and φ₁ with degrees i₂ and i₁ has type M₁ i → M₂ ((i + i₁) + i₂). However, a homomorphism with degree i₁ + i₂ must have type M₁ i → M₂ (i + (i₁ + i₂)), which means that we need to insert a transport. With endofunctions this is not a problem: λi, (i + i₁) + i₂ is a perfectly fine degree of a map (2) Since we cannot eliminate all possible transports, we don't define a homomorphism as function M₁ i →lm M₂ (i + deg f) or M₁ i →lm M₂ (deg f i) but as a function taking a path as argument. Specifically, for every path deg f i = j we get a function M₁ i → M₂ j. -/ definition graded_hom_of_deg (d : I ≃ I) (M₁ M₂ : graded_module R I) : Type := Π⦃i j : I⦄ (p : d i = j), M₁ i →lm M₂ j definition gmd_constant [constructor] (d : I ≃ I) (M₁ M₂ : graded_module R I) : graded_hom_of_deg d M₁ M₂ := λi j p, lm_constant (M₁ i) (M₂ j) definition gmd0 [constructor] {d : I ≃ I} {M₁ M₂ : graded_module R I} : graded_hom_of_deg d M₁ M₂ := gmd_constant d M₁ M₂ structure graded_hom (M₁ M₂ : graded_module R I) : Type := mk' :: (d : I ≃ I) (fn' : graded_hom_of_deg d M₁ M₂) notation M₁ ` →gm ` M₂ := graded_hom M₁ M₂ abbreviation deg [unfold 5] := @graded_hom.d postfix ` ↘`:(max+10) := graded_hom.fn' -- there is probably a better character for this? Maybe ↷? definition graded_hom_fn [reducible] [unfold 5] [coercion] (f : M₁ →gm M₂) (i : I) : M₁ i →lm M₂ (deg f i) := f ↘ idp definition graded_hom_fn_in [reducible] [unfold 5] (f : M₁ →gm M₂) (i : I) : M₁ ((deg f)⁻¹ i) →lm M₂ i := f ↘ (to_right_inv (deg f) i) infix ` ← `:101 := graded_hom_fn_in -- todo: change notation definition graded_hom.mk [constructor] {M₁ M₂ : graded_module R I} (d : I ≃ I) (fn : Πi, M₁ i →lm M₂ (d i)) : M₁ →gm M₂ := graded_hom.mk' d (λi j p, homomorphism_of_eq (ap M₂ p) ∘lm fn i) definition graded_hom.mk_in [constructor] {M₁ M₂ : graded_module R I} (d : I ≃ I) (fn : Πi, M₁ (d⁻¹ i) →lm M₂ i) : M₁ →gm M₂ := graded_hom.mk' d (λi j p, fn j ∘lm homomorphism_of_eq (ap M₁ (eq_inv_of_eq p))) definition graded_hom.mk_out_in [constructor] {M₁ M₂ : graded_module R I} (d₁ : I ≃ I) (d₂ : I ≃ I) (fn : Πi, M₁ (d₁ i) →lm M₂ (d₂ i)) : M₁ →gm M₂ := graded_hom.mk' (d₁⁻¹ᵉ ⬝e d₂) (λi j p, homomorphism_of_eq (ap M₂ p) ∘lm fn (d₁⁻¹ᵉ i) ∘lm homomorphism_of_eq (ap M₁ (to_right_inv d₁ i)⁻¹)) definition graded_hom_eq_transport (f : M₁ →gm M₂) {i j : I} (p : deg f i = j) (m : M₁ i) : f ↘ p m = transport M₂ p (f i m) := by induction p; reflexivity definition graded_hom_eq_zero {f : M₁ →gm M₂} {i j k : I} {q : deg f i = j} {p : deg f i = k} (m : M₁ i) (r : f ↘ q m = 0) : f ↘ p m = 0 := have f ↘ p m = transport M₂ (q⁻¹ ⬝ p) (f ↘ q m), begin induction p, induction q, reflexivity end, this ⬝ ap (transport M₂ (q⁻¹ ⬝ p)) r ⬝ tr_eq_of_pathover (apd (λi, 0) (q⁻¹ ⬝ p)) variables {f' : M₂ →gm M₃} {f g : M₁ →gm M₂} definition graded_hom_compose [constructor] (f' : M₂ →gm M₃) (f : M₁ →gm M₂) : M₁ →gm M₃ := graded_hom.mk (deg f ⬝e deg f') (λi, f' (deg f i) ∘lm f i) infixr ` ∘gm `:75 := graded_hom_compose definition graded_hom_compose_fn (f' : M₂ →gm M₃) (f : M₁ →gm M₂) (i : I) (m : M₁ i) : (f' ∘gm f) i m = f' (deg f i) (f i m) := proof idp qed variable (M) definition graded_hom_id [constructor] [refl] : M →gm M := graded_hom.mk erfl (λi, lmid) variable {M} abbreviation gmid [constructor] := graded_hom_id M definition gm_constant [constructor] (M₁ M₂ : graded_module R I) (d : I ≃ I) : M₁ →gm M₂ := graded_hom.mk' d (gmd_constant d M₁ M₂) structure graded_iso (M₁ M₂ : graded_module R I) : Type := mk' :: (to_hom : M₁ →gm M₂) (is_equiv_to_hom : Π⦃i j⦄ (p : deg to_hom i = j), is_equiv (to_hom ↘ p)) infix ` ≃gm `:25 := graded_iso attribute graded_iso.to_hom [coercion] attribute graded_iso._trans_of_to_hom [unfold 5] definition is_equiv_graded_iso [instance] [priority 1010] (φ : M₁ ≃gm M₂) (i : I) : is_equiv (φ i) := graded_iso.is_equiv_to_hom φ idp definition isomorphism_of_graded_iso' [constructor] (φ : M₁ ≃gm M₂) {i j : I} (p : deg φ i = j) : M₁ i ≃lm M₂ j := isomorphism.mk (φ ↘ p) !graded_iso.is_equiv_to_hom definition isomorphism_of_graded_iso [constructor] (φ : M₁ ≃gm M₂) (i : I) : M₁ i ≃lm M₂ (deg φ i) := isomorphism.mk (φ i) _ definition isomorphism_of_graded_iso_in [constructor] (φ : M₁ ≃gm M₂) (i : I) : M₁ ((deg φ)⁻¹ i) ≃lm M₂ i := isomorphism_of_graded_iso' φ !to_right_inv protected definition graded_iso.mk [constructor] (d : I ≃ I) (φ : Πi, M₁ i ≃lm M₂ (d i)) : M₁ ≃gm M₂ := begin apply graded_iso.mk' (graded_hom.mk d φ), intro i j p, induction p, exact to_is_equiv (equiv_of_isomorphism (φ i)), end protected definition graded_iso.mk_in [constructor] (d : I ≃ I) (φ : Πi, M₁ (d⁻¹ i) ≃lm M₂ i) : M₁ ≃gm M₂ := begin apply graded_iso.mk' (graded_hom.mk_in d φ), intro i j p, esimp, exact @is_equiv_compose _ _ _ _ _ !is_equiv_cast _, end definition graded_iso_of_eq [constructor] {M₁ M₂ : graded_module R I} (p : M₁ ~ M₂) : M₁ ≃gm M₂ := graded_iso.mk erfl (λi, isomorphism_of_eq (p i)) -- definition to_gminv [constructor] (φ : M₁ ≃gm M₂) : M₂ →gm M₁ := -- graded_hom.mk_in (deg φ)⁻¹ᵉ -- abstract begin -- intro i, apply isomorphism.to_hom, symmetry, -- apply isomorphism_of_graded_iso φ -- end end variable (M) definition graded_iso.refl [refl] [constructor] : M ≃gm M := graded_iso.mk equiv.rfl (λi, isomorphism.rfl) variable {M} definition graded_iso.rfl [refl] [constructor] : M ≃gm M := graded_iso.refl M definition graded_iso.symm [symm] [constructor] (φ : M₁ ≃gm M₂) : M₂ ≃gm M₁ := graded_iso.mk_in (deg φ)⁻¹ᵉ (λi, (isomorphism_of_graded_iso φ i)⁻¹ˡᵐ) definition graded_iso.trans [trans] [constructor] (φ : M₁ ≃gm M₂) (ψ : M₂ ≃gm M₃) : M₁ ≃gm M₃ := graded_iso.mk (deg φ ⬝e deg ψ) (λi, isomorphism_of_graded_iso φ i ⬝lm isomorphism_of_graded_iso ψ (deg φ i)) definition graded_iso.eq_trans [trans] [constructor] {M₁ M₂ : graded_module R I} {M₃ : graded_module R I} (φ : M₁ ~ M₂) (ψ : M₂ ≃gm M₃) : M₁ ≃gm M₃ := proof graded_iso.trans (graded_iso_of_eq φ) ψ qed definition graded_iso.trans_eq [trans] [constructor] {M₁ : graded_module R I} {M₂ M₃ : graded_module R I} (φ : M₁ ≃gm M₂) (ψ : M₂ ~ M₃) : M₁ ≃gm M₃ := graded_iso.trans φ (graded_iso_of_eq ψ) postfix `⁻¹ᵍᵐ`:(max + 1) := graded_iso.symm infixl ` ⬝gm `:75 := graded_iso.trans infixl ` ⬝gmp `:75 := graded_iso.trans_eq infixl ` ⬝pgm `:75 := graded_iso.eq_trans definition graded_hom_of_eq [constructor] {M₁ M₂ : graded_module R I} (p : M₁ ~ M₂) : M₁ →gm M₂ := graded_iso_of_eq p structure graded_homotopy (f g : M₁ →gm M₂) : Type := mk' :: (hd : deg f ~ deg g) (hfn : Π⦃i j : I⦄ (pf : deg f i = j) (pg : deg g i = j) (r : hd i ⬝ pg = pf), f ↘ pf ~ g ↘ pg) infix ` ~gm `:50 := graded_homotopy definition graded_homotopy.mk (hd : deg f ~ deg g) (hfn : Πi m, f i m =[hd i] g i m) : f ~gm g := graded_homotopy.mk' hd begin intro i j pf pg r m, induction r, induction pg, esimp, exact graded_hom_eq_transport f (hd i) m ⬝ tr_eq_of_pathover (hfn i m), end definition graded_homotopy_of_deg (d : I ≃ I) (f g : graded_hom_of_deg d M₁ M₂) : Type := Π⦃i j : I⦄ (p : d i = j), f p ~ g p notation f ` ~[`:50 d:0 `] `:0 g:50 := graded_homotopy_of_deg d f g variables {d : I ≃ I} {f₁ f₂ : graded_hom_of_deg d M₁ M₂} -- definition graded_homotopy_elim' [unfold 8] := @graded_homotopy_of_deg.elim' -- definition graded_homotopy_elim [reducible] [unfold 8] [coercion] (h : f₁ ~[d] f₂) (i : I) : -- f₁ (refl i) ~ f₂ (refl i) := -- graded_homotopy_elim' _ _ -- definition graded_homotopy_elim_in [reducible] [unfold 8] (f : M₁ →gm M₂) (i : I) : M₁ ((deg f)⁻¹ i) →lm M₂ i := -- f ↘ (to_right_inv (deg f) i) definition graded_homotopy_of_deg.mk [constructor] (h : Πi, f₁ (idpath (d i)) ~ f₂ (idpath (d i))) : f₁ ~[d] f₂ := begin intro i j p, induction p, exact h i end -- definition graded_homotopy.mk_in [constructor] {M₁ M₂ : graded_module R I} (d : I ≃ I) -- (fn : Πi, M₁ (d⁻¹ i) →lm M₂ i) : M₁ →gm M₂ := -- graded_hom.mk' d (λi j p, fn j ∘lm homomorphism_of_eq (ap M₁ (eq_inv_of_eq p))) -- definition is_gconstant (f : M₁ →gm M₂) : Type := -- f↘ ~[deg f] gmd0 definition compose_constant (f' : M₂ →gm M₃) (f : M₁ →gm M₂) : Type := Π⦃i j k : I⦄ (p : deg f i = j) (q : deg f' j = k) (m : M₁ i), f' ↘ q (f ↘ p m) = 0 definition compose_constant.mk (h : Πi m, f' (deg f i) (f i m) = 0) : compose_constant f' f := by intros; induction p; induction q; exact h i m definition compose_constant.elim (h : compose_constant f' f) (i : I) (m : M₁ i) : f' (deg f i) (f i m) = 0 := h idp idp m definition is_gconstant (f : M₁ →gm M₂) : Type := Π⦃i j : I⦄ (p : deg f i = j) (m : M₁ i), f ↘ p m = 0 definition is_gconstant.mk (h : Πi m, f i m = 0) : is_gconstant f := by intros; induction p; exact h i m definition is_gconstant.elim (h : is_gconstant f) (i : I) (m : M₁ i) : f i m = 0 := h idp m /- direct sum of graded R-modules -/ variables {J : Set} (N : graded_module R J) definition dirsum' : AddAbGroup := group.dirsum (λj, AddAbGroup_of_LeftModule (N j)) variable {N} definition dirsum_smul [constructor] (r : R) : dirsum' N →a dirsum' N := dirsum_functor (λi, smul_homomorphism (N i) r) definition dirsum_smul_right_distrib (r s : R) (n : dirsum' N) : dirsum_smul (r + s) n = dirsum_smul r n + dirsum_smul s n := begin refine dirsum_functor_homotopy _ n ⬝ !dirsum_functor_add⁻¹, intro i ni, exact to_smul_right_distrib r s ni end definition dirsum_mul_smul' (r s : R) (n : dirsum' N) : dirsum_smul (r * s) n = (dirsum_smul r ∘a dirsum_smul s) n := begin refine dirsum_functor_homotopy _ n ⬝ (dirsum_functor_compose _ _ n)⁻¹ᵖ, intro i ni, exact to_mul_smul r s ni end definition dirsum_mul_smul (r s : R) (n : dirsum' N) : dirsum_smul (r * s) n = dirsum_smul r (dirsum_smul s n) := proof dirsum_mul_smul' r s n qed definition dirsum_one_smul (n : dirsum' N) : dirsum_smul 1 n = n := begin refine dirsum_functor_homotopy _ n ⬝ !dirsum_functor_gid, intro i ni, exact to_one_smul ni end definition dirsum : LeftModule R := LeftModule_of_AddAbGroup (dirsum' N) (λr n, dirsum_smul r n) (λr, homomorphism.addstruct (dirsum_smul r)) dirsum_smul_right_distrib dirsum_mul_smul dirsum_one_smul /- graded variants of left-module constructions -/ definition graded_submodule [constructor] (S : Πi, submodule_rel (M i)) : graded_module R I := λi, submodule (S i) definition graded_submodule_incl [constructor] (S : Πi, submodule_rel (M i)) : graded_submodule S →gm M := graded_hom.mk erfl (λi, submodule_incl (S i)) definition graded_hom_lift [constructor] {S : Πi, submodule_rel (M₂ i)} (φ : M₁ →gm M₂) (h : Π(i : I) (m : M₁ i), S (deg φ i) (φ i m)) : M₁ →gm graded_submodule S := graded_hom.mk (deg φ) (λi, hom_lift (φ i) (h i)) definition graded_image (f : M₁ →gm M₂) : graded_module R I := λi, image_module (f ↘ (to_right_inv (deg f) i)) definition graded_image_lift [constructor] (f : M₁ →gm M₂) : M₁ →gm graded_image f := graded_hom.mk_in (deg f) (λi, image_lift (f ↘ (to_right_inv (deg f) i))) definition graded_image_elim [constructor] {f : M₁ →gm M₂} (g : M₁ →gm M₃) (h : Π⦃i m⦄, f i m = 0 → g i m = 0) : graded_image f →gm M₃ := begin apply graded_hom.mk_out_in (deg f) (deg g), intro i, apply image_elim (g ↘ (ap (deg g) (to_left_inv (deg f) i))), intro m p, refine graded_hom_eq_zero m (h _), exact graded_hom_eq_zero m p end definition graded_quotient (S : Πi, submodule_rel (M i)) : graded_module R I := λi, quotient_module (S i) definition graded_quotient_map [constructor] (S : Πi, submodule_rel (M i)) : M →gm graded_quotient S := graded_hom.mk erfl (λi, quotient_map (S i)) definition graded_homology (g : M₂ →gm M₃) (f : M₁ →gm M₂) : graded_module R I := λi, homology (g i) (f ↘ (to_right_inv (deg f) i)) definition graded_homology_elim {g : M₂ →gm M₃} {f : M₁ →gm M₂} (h : M₂ →gm M) (H : compose_constant h f) : graded_homology g f →gm M := graded_hom.mk (deg h) (λi, homology_elim (h i) (H _ _)) /- exact couples -/ definition is_exact_gmod (f : M₁ →gm M₂) (f' : M₂ →gm M₃) : Type := Π⦃i j k⦄ (p : deg f i = j) (q : deg f' j = k), is_exact_mod (f ↘ p) (f' ↘ q) definition gmod_im_in_ker (h : is_exact_gmod f f') : compose_constant f' f := λi j k p q, is_exact.im_in_ker (h p q) structure exact_couple (M₁ M₂ : graded_module R I) : Type := (i : M₁ →gm M₁) (j : M₁ →gm M₂) (k : M₂ →gm M₁) (exact_ij : is_exact_gmod i j) (exact_jk : is_exact_gmod j k) (exact_ki : is_exact_gmod k i) end left_module namespace left_module namespace derived_couple section parameters {R : Ring} {I : Type} {D E : graded_module R I} {i : D →gm D} {j : D →gm E} {k : E →gm D} (exact_ij : is_exact_gmod i j) (exact_jk : is_exact_gmod j k) (exact_ki : is_exact_gmod k i) definition d : E →gm E := j ∘gm k definition D' : graded_module R I := graded_image i definition E' : graded_module R I := graded_homology d d definition i' : D' →gm D' := graded_image_lift i ∘gm graded_submodule_incl _ include exact_jk exact_ki theorem j_lemma1 ⦃x : I⦄ (m : D x) : d ((deg j) x) (j x m) = 0 := begin rewrite [graded_hom_compose_fn,↑d,graded_hom_compose_fn], refine ap (graded_hom_fn j (deg k (deg j x))) _ ⬝ !to_respect_zero, exact compose_constant.elim (gmod_im_in_ker exact_jk) x m end theorem j_lemma2 : Π⦃x : I⦄ ⦃m : D x⦄ (p : i x m = 0), (graded_quotient_map _ ∘gm graded_hom_lift j j_lemma1) x m = 0 :> E' _ := begin have Π⦃x y : I⦄ (q : deg k x = y) (r : deg d x = deg j y) (s : ap (deg j) q = r) ⦃m : D y⦄ (p : i y m = 0), image (d ↘ r) (j y m), begin intros, induction s, induction q, note m_in_im_k := is_exact.ker_in_im (exact_ki idp _) _ p, induction m_in_im_k with e q, induction q, apply image.mk e idp end, have Π⦃x : I⦄ ⦃m : D x⦄ (p : i x m = 0), image (d ← (deg j x)) (j x m), begin intros, refine this _ _ _ p, exact to_right_inv (deg k) _ ⬝ to_left_inv (deg j) x, rewrite [ap_con, -adj], end, intros, rewrite [graded_hom_compose_fn], exact quotient_map_eq_zero _ (this p) end definition j' : D' →gm E' := graded_image_elim (!graded_quotient_map ∘gm graded_hom_lift j j_lemma1) j_lemma2 definition k' : E' →gm D' := graded_homology_elim (graded_image_lift i ∘gm k) abstract begin apply compose_constant.mk, intro x m, rewrite [graded_hom_compose_fn], refine ap (graded_hom_fn (graded_image_lift i) (deg k (deg d x))) _ ⬝ !to_respect_zero, exact compose_constant.elim (gmod_im_in_ker exact_jk) (deg k x) (k x m) end end end end derived_couple end left_module