/- Copyright (c) 2017 Egbert Rijke. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Egbert Rijke Basic facts about short exact sequences. At the moment, it only covers short exact sequences of abelian groups, but this should be extended to short exact sequences in any abelian category. -/ import algebra.group_theory hit.set_quotient types.sigma types.list types.sum .quotient_group .subgroup .exactness open eq algebra is_trunc set_quotient relation sigma sigma.ops prod prod.ops sum list trunc function group trunc equiv is_equiv property structure SES (A B C : AbGroup) := ( f : A →g B) ( g : B →g C) ( Hf : is_embedding f) ( Hg : is_surjective g) ( ex : is_exact_ag f g) definition SES_of_inclusion {A B : AbGroup} (f : A →g B) (Hf : is_embedding f) : SES A B (quotient_ab_group (image f)) := begin have Hg : is_surjective (ab_qg_map (image f)), from is_surjective_ab_qg_map (image f), fapply SES.mk, exact f, exact ab_qg_map (image f), exact Hf, exact Hg, fapply is_exact.mk, intro a, fapply ab_qg_map_eq_one, fapply tr, fapply fiber.mk, exact a, reflexivity, intro b, intro p, exact rel_of_ab_qg_map_eq_one _ p end definition SES_of_subgroup {B : AbGroup} (S : property B) [is_subgroup B S] : SES (ab_subgroup S) B (quotient_ab_group S) := begin fapply SES.mk, exact incl_of_subgroup S, exact ab_qg_map S, exact is_embedding_incl_of_subgroup S, exact is_surjective_ab_qg_map S, fapply is_exact.mk, intro a, fapply ab_qg_map_eq_one, induction a with b p, exact p, intro b p, fapply tr, fapply fiber.mk, fapply sigma.mk b, fapply rel_of_ab_qg_map_eq_one, exact p, reflexivity, end definition SES_of_surjective_map {B C : AbGroup} (g : B →g C) (Hg : is_surjective g) : SES (ab_Kernel g) B C := begin fapply SES.mk, exact ab_Kernel_incl g, exact g, exact is_embedding_ab_kernel_incl g, exact Hg, fapply is_exact.mk, intro a, induction a with a p, exact p, intro b p, fapply tr, fapply fiber.mk, fapply sigma.mk, exact b, exact p, reflexivity, end definition SES_of_homomorphism {A B : AbGroup} (f : A →g B) : SES (ab_Kernel f) A (ab_Image f) := begin fapply SES.mk, exact ab_Kernel_incl f, exact image_lift f, exact is_embedding_ab_kernel_incl f, exact is_surjective_image_lift f, fapply is_exact.mk, intro a, induction a with a p, fapply subtype_eq, exact p, intro a p, fapply tr, fapply fiber.mk, fapply sigma.mk, exact a, exact calc f a = image_incl f (image_lift f a) : by exact homotopy_of_eq (ap group_fun (image_factor f)) a ... = image_incl f 1 : ap (image_incl f) p ... = 1 : by exact respect_one (image_incl f), reflexivity end definition SES_of_isomorphism_right {B C : AbGroup} (g : B ≃g C) : SES trivial_ab_group B C := begin fapply SES.mk, exact from_trivial_ab_group B, exact g, exact is_embedding_from_trivial_ab_group B, fapply is_surjective_of_is_equiv, fapply is_exact.mk, intro a, induction a, fapply respect_one, intro b p, have q : g b = g 1, from p ⬝ (respect_one g)⁻¹, note r := inj (equiv_of_isomorphism g) q, fapply tr, fapply fiber.mk, exact unit.star, rewrite r, end structure hom_SES {A B C A' B' C' : AbGroup} (ses : SES A B C) (ses' : SES A' B' C') := ( hA : A →g A') ( hB : B →g B') ( hC : C →g C') ( htpy1 : hB ∘g (SES.f ses) ~ (SES.f ses') ∘g hA) ( htpy2 : hC ∘g (SES.g ses) ~ (SES.g ses') ∘g hB) section ses parameters {A B C : AbGroup} (ses : SES A B C) local abbreviation f := SES.f ses local notation `g` := SES.g ses local abbreviation ex := SES.ex ses local abbreviation q := ab_qg_map (kernel g) local abbreviation B_mod_A := quotient_ab_group (kernel g) definition SES_iso_stable {A' B' C' : AbGroup} (f' : A' →g B') (g' : B' →g C') (α : A' ≃g A) (β : B' ≃g B) (γ : C' ≃g C) (Hαβ : f ∘g α ~ β ∘g f') (Hβγ : g ∘g β ~ γ ∘g g') : SES A' B' C' := begin fapply SES.mk, exact f', exact g', fapply is_embedding_of_is_injective, intros x y p, have path : f (α x) = f (α y), by exact calc f (α x) = β (f' x) : Hαβ x ... = β (f' y) : ap β p ... = f (α y) : (Hαβ y)⁻¹, have path' : α x = α y, by exact @is_injective_of_is_embedding _ _ f (SES.Hf ses) _ _ path, exact @is_injective_of_is_embedding _ _ α (is_embedding_of_is_equiv α) _ _ path', exact sorry, exact sorry, end definition SES_of_triangle_left {A' : AbGroup} (α : A' ≃g A) (f' : A' →g B) (H : Π a' : A', f (α a') = f' a') : SES A' B C := begin fapply SES.mk, exact f', exact g, fapply is_embedding_of_is_injective, intro x y p, fapply inj (equiv_of_isomorphism α), fapply @is_injective_of_is_embedding _ _ f (SES.Hf ses) (α x) (α y), rewrite [H x], rewrite [H y], exact p, exact SES.Hg ses, fapply is_exact.mk, intro a', rewrite [(H a')⁻¹], fapply is_exact.im_in_ker (SES.ex ses), intro b p, have t : image' f b, from is_exact.ker_in_im (SES.ex ses) b p, unfold image' at t, induction t, fapply tr, induction a with a h, fapply fiber.mk, exact α⁻¹ᵍ a, rewrite [(H (α⁻¹ᵍ a))⁻¹], krewrite [right_inv (equiv_of_isomorphism α) a], exact h end --definition quotient_SES {A B C : AbGroup} (ses : SES A B C) : -- quotient_ab_group (image_subgroup (SES.f ses)) ≃g C := -- begin -- fapply ab_group_first_iso_thm B C (SES.g ses), -- end -- definition pre_right_extend_SES (to separate the following definition and replace C with B/A) definition quotient_codomain_SES : B_mod_A ≃g C := begin exact (codomain_surjection_is_quotient g (SES.Hg ses)) end local abbreviation α := quotient_codomain_SES definition quotient_triangle_SES : α ∘g q ~ g := begin reflexivity end definition quotient_triangle_extend_SES {C': AbGroup} (k : B →g C') : (Σ (h : C →g C'), h ∘g g ~ k) ≃ (Σ (h' : B_mod_A →g C'), h' ∘g q ~ k) := begin fapply equiv.mk, intro pair, induction pair with h H, fapply sigma.mk, exact h ∘g α, intro b, exact H b, fapply adjointify, intro pair, induction pair with h' H', fapply sigma.mk, exact h' ∘g α⁻¹ᵍ, intro b, exact calc h' (α⁻¹ᵍ (g b)) = h' (α⁻¹ᵍ (α (q b))) : by reflexivity ... = h' (q b) : by exact hwhisker_left h' (left_inv α) (q b) ... = k b : by exact H' b, intro pair, induction pair with h' H', fapply sigma_eq, esimp, fapply homomorphism_eq, fapply hwhisker_left h' (left_inv α), esimp, fapply is_prop.elimo, fapply pi.is_trunc_pi, intro a, fapply is_trunc_eq, intro pair, induction pair with h H, fapply sigma_eq, esimp, fapply homomorphism_eq, fapply hwhisker_left h (right_inv α), esimp, fapply is_prop.elimo, fapply pi.is_trunc_pi, intro a, fapply is_trunc_eq, end parameters {A' B' C' : AbGroup} (ses' : SES A' B' C') (hA : A →g A') (hB : B →g B') (htpy1 : hB ∘g f ~ (SES.f ses') ∘g hA) local abbreviation f' := SES.f ses' local notation `g'` := SES.g ses' local abbreviation ex' := SES.ex ses' local abbreviation q' := ab_qg_map (kernel g') local abbreviation α' := quotient_codomain_SES include htpy1 definition quotient_extend_unique_SES : is_contr (Σ (hC : C →g C'), hC ∘g g ~ g' ∘g hB) := begin fapply @(is_trunc_equiv_closed_rev _ (quotient_triangle_extend_SES (g' ∘g hB))), fapply ab_qg_universal_property, intro b, intro K, have k : image' f b, from is_exact.ker_in_im ex b K, unfold image' at k, induction k, induction a with a p, induction p, refine (ap g' (htpy1 a)) ⬝ _, fapply is_exact.im_in_ker ex' (hA a) end /- -- We define a group homomorphism B/ker(g) →g B'/ker(g'), keeping in mind that ker(g)=A and ker(g')=A'. definition quotient_extend_SES : quotient_ab_group (kernel_subgroup g) →g quotient_ab_group (kernel_subgroup g') := begin fapply ab_group_quotient_homomorphism B B' (kernel_subgroup g) (kernel_subgroup g') hB, intro b, intro K, have k : trunctype.carrier (image_subgroup f b), from is_exact.ker_in_im ex b K, induction k, induction a with a p, rewrite [p⁻¹], rewrite [htpy1 a], fapply is_exact.im_in_ker ex' (hA a) end local abbreviation k := quotient_extend_SES definition quotient_extend_SES_square : k ∘g (ab_qg_map (kernel_subgroup g)) ~ (ab_qg_map (kernel_subgroup g')) ∘g hB := begin fapply quotient_group_compute end definition right_extend_SES : C →g C' := α' ∘g k ∘g α⁻¹ᵍ local abbreviation hC := right_extend_SES definition right_extend_SES_square : hC ∘g g ~ g' ∘ hB := begin exact calc hC ∘g g ~ hC ∘g α ∘g q : by reflexivity ... ~ α' ∘g k ∘g α⁻¹ᵍ ∘g α ∘g q : by reflexivity ... ~ α' ∘g k ∘g q : by exact hwhisker_left (α' ∘g k) (hwhisker_right q (left_inv α)) ... ~ α' ∘g q' ∘g hB : by exact hwhisker_left α' (quotient_extend_SES_square) ... ~ g' ∘g hB : by reflexivity end local abbreviation htpy2 := right_extend_SES_square definition right_extend_SES_unique_map_aux (hC' : C →g C') (htpy2' : g' ∘g hB ~ hC' ∘g g) : k ∘g q ~ α'⁻¹ᵍ ∘g hC' ∘g α ∘g q := begin exact calc k ∘g q ~ q' ∘g hB : by reflexivity ... ~ α'⁻¹ᵍ ∘g α' ∘g q' ∘g hB : by exact hwhisker_right (q' ∘g hB) (homotopy.symm (left_inv α')) ... ~ α'⁻¹ᵍ ∘g g' ∘g hB : by reflexivity ... ~ α'⁻¹ᵍ ∘g hC' ∘g g : by exact hwhisker_left (α'⁻¹ᵍ) htpy2' ... ~ α'⁻¹ᵍ ∘g hC' ∘g α ∘g q : by reflexivity end definition right_extend_SES_unique_map (hC' : C →g C') (htpy2' : hC' ∘g g ~ g' ∘g hB) : hC ~ hC' := begin exact calc hC ~ α' ∘g k ∘g α⁻¹ᵍ : by reflexivity ... ~ α' ∘g α'⁻¹ᵍ ∘g hC' ∘g α ∘g α⁻¹ᵍ : ... ~ hC' ∘g α ∘g α⁻¹ᵍ : _ ... ~ hC' : _ end definition right_extend_hom_SES : hom_SES ses ses' := begin fapply hom_SES.mk, exact hA, exact hB, exact hC, exact htpy1, exact htpy2 end -/ end ses