import types.trunc types.sum types.lift types.unit open pi prod sum unit bool trunc is_trunc is_equiv eq equiv lift pointed namespace choice universe variables u v -- the following brilliant name is from Agda definition unchoose [unfold 4] (n : ℕ₋₂) {X : Type} (A : X → Type) : trunc n (Πx, A x) → Πx, trunc n (A x) := trunc.elim (λf x, tr (f x)) definition has_choice [class] (n : ℕ₋₂) (X : Type.{u}) : Type.{max u (v+1)} := Π(A : X → Type.{v}), is_equiv (unchoose n A) definition choice_equiv [constructor] {n : ℕ₋₂} {X : Type} [H : has_choice.{u v} n X] (A : X → Type) : trunc n (Πx, A x) ≃ (Πx, trunc n (A x)) := equiv.mk _ (H A) definition has_choice_of_succ (X : Type) (H : Πk, has_choice.{_ v} (k.+1) X) (n : ℕ₋₂) : has_choice.{_ v} n X := begin cases n with n, { intro A, exact is_equiv_of_is_contr _ _ _ }, { exact H n } end /- currently we prove it using univalence, which means we cannot apply it to lift. -/ definition has_choice_equiv_closed (n : ℕ₋₂) {A B : Type} (f : A ≃ B) (hA : has_choice.{u v} n B) : has_choice.{u v} n A := begin induction f using rec_on_ua_idp, exact hA end definition has_choice_empty [instance] (n : ℕ₋₂) : has_choice.{_ v} n empty := begin intro A, fapply adjointify, { intro f, apply tr, intro x, induction x }, { intro f, apply eq_of_homotopy, intro x, induction x }, { intro g, induction g with g, apply ap tr, apply eq_of_homotopy, intro x, induction x } end definition has_choice_unit [instance] : Πn, has_choice.{_ v} n unit := begin intro n A, fapply adjointify, { intro f, induction f ⋆ with a, apply tr, intro u, induction u, exact a }, { intro f, apply eq_of_homotopy, intro u, induction u, esimp, generalize f ⋆, intro a, induction a, reflexivity }, { intro g, induction g with g, apply ap tr, apply eq_of_homotopy, intro u, induction u, reflexivity } end definition has_choice_sum [instance] (n : ℕ₋₂) (A B : Type.{u}) [has_choice.{_ v} n A] [has_choice.{_ v} n B] : has_choice.{_ v} n (A ⊎ B) := begin intro P, fapply is_equiv_of_equiv_of_homotopy, { exact calc trunc n (Πx, P x) ≃ trunc n ((Πa, P (inl a)) × Πb, P (inr b)) : trunc_equiv_trunc n !equiv_sum_rec⁻¹ᵉ ... ≃ trunc n (Πa, P (inl a)) × trunc n (Πb, P (inr b)) : trunc_prod_equiv ... ≃ (Πa, trunc n (P (inl a))) × Πb, trunc n (P (inr b)) : by exact prod_equiv_prod (choice_equiv _) (choice_equiv _) ... ≃ Πx, trunc n (P x) : equiv_sum_rec }, { intro f, induction f, apply eq_of_homotopy, intro x, esimp, induction x with a b: reflexivity } end definition has_choice_bool [instance] (n : ℕ₋₂) : has_choice.{_ v} n bool := has_choice_equiv_closed n bool_equiv_unit_sum_unit _ definition has_choice_lift.{u'} [instance] (n : ℕ₋₂) (A : Type) [has_choice.{_ v} n A] : has_choice.{_ v} n (lift.{u u'} A) := sorry --has_choice_equiv_closed n !equiv_lift⁻¹ᵉ _ definition has_choice_punit [instance] (n : ℕ₋₂) : has_choice.{_ v} n punit := has_choice_unit n definition has_choice_pbool [instance] (n : ℕ₋₂) : has_choice.{_ v} n pbool := has_choice_bool n definition has_choice_plift [instance] (n : ℕ₋₂) (A : Type*) [has_choice.{_ v} n A] : has_choice.{_ v} n (plift A) := has_choice_lift n A definition has_choice_psum [instance] (n : ℕ₋₂) (A B : Type*) [has_choice.{_ v} n A] [has_choice.{_ v} n B] : has_choice.{_ v} n (psum A B) := has_choice_sum n A B end choice