import homotopy.sphere2 ..move_to_lib open fin eq equiv group algebra sphere.ops pointed trunc is_equiv function circle int nat protected definition nat.eq_one_of_mul_eq_one {n : ℕ} (m : ℕ) (q : n * m = 1) : n = 1 := begin cases n with n, { exact empty.elim (succ_ne_zero 0 ((nat.zero_mul m)⁻¹ ⬝ q)⁻¹) }, { cases n with n, { reflexivity }, { apply empty.elim, cases m with m, { exact succ_ne_zero 0 q⁻¹ }, { apply nat.lt_irrefl 1, exact (calc 1 ≤ (m + 1) : succ_le_succ (nat.zero_le m) ... = 1 * (m + 1) : (nat.one_mul (m + 1))⁻¹ ... < (n + 2) * (m + 1) : nat.mul_lt_mul_of_pos_right (succ_le_succ (succ_le_succ (nat.zero_le n))) (zero_lt_succ m) ... = 1 : q) } } } end definition cases_of_nat_abs_eq {z : ℤ} (n : ℕ) (p : nat_abs z = n) : (z = of_nat n) ⊎ (z = - of_nat n) := begin cases p, apply by_cases_of_nat z, { intro n, apply sum.inl, reflexivity }, { intro n, apply sum.inr, exact ap int.neg (ap of_nat (nat_abs_neg n))⁻¹ } end definition eq_one_or_eq_neg_one_of_mul_eq_one {n : ℤ} (m : ℤ) (p : n * m = 1) : n = 1 ⊎ n = -1 := cases_of_nat_abs_eq 1 (nat.eq_one_of_mul_eq_one (nat_abs m) ((int.nat_abs_mul n m)⁻¹ ⬝ ap int.nat_abs p)) definition endomorphism_int_unbundled (f : ℤ → ℤ) [is_add_hom f] (n : ℤ) : f n = f 1 * n := begin induction n using rec_nat_on with n IH n IH, { refine respect_zero f ⬝ _, exact !mul_zero⁻¹ }, { refine respect_add f n 1 ⬝ _, rewrite IH, rewrite [↑int.succ, left_distrib], apply ap (λx, _ + x), exact !mul_one⁻¹}, { rewrite [neg_nat_succ], refine respect_add f (-n) (- 1) ⬝ _, rewrite [IH, ↑int.pred, mul_sub_left_distrib], apply ap (λx, _ + x), refine _ ⬝ ap neg !mul_one⁻¹, exact respect_neg f 1 } end namespace sphere /- TODO: define for unbased maps, define for S 0, clear sorry s prove stable under suspension -/ attribute fundamental_group_of_circle fg_carrier_equiv_int [constructor] attribute untrunc_of_is_trunc [unfold 4] definition surf_eq_loop : @surf 1 = circle.loop := sorry /- Favonia had a good idea, which he got from Ulrik: use the cogroup structure on the suspension to construct a group structure on ΣX →* Y, from which you can easily show that deg(id) = 1. See in the Agda library the files cogroup, cohspace and Group/LoopSuspAdjoint (or something) -/ -- definition π2S2_surf : π2S2 (tr surf) = 1 :> ℤ := -- begin -- unfold [π2S2, chain_complex.LES_of_homotopy_groups], -- end -- check (pmap.to_fun -- (chain_complex.cc_to_fn -- (chain_complex.LES_of_homotopy_groups -- hopf.complex_phopf) -- (pair 1 2)) -- (tr surf)) -- eval (pmap.to_fun -- (chain_complex.cc_to_fn -- (chain_complex.LES_of_homotopy_groups -- hopf.complex_phopf) -- (pair 1 2)) -- (tr surf)) attribute gloopn [reducible] definition πnSn_surf (n : ℕ) : πnSn (n+1) (tr (@surf (n+1))) = 1 := begin cases n with n IH, { refine ap (πnSn _ ∘ tr) surf_eq_loop ⬝ _, apply transport_code_loop }, { unfold [πnSn], exact sorry} end definition deg {n : ℕ} [H : is_succ n] (f : S n →* S n) : ℤ := by induction H with n; exact πnSn (n+1) (π→g[n+1] f (tr (@surf (n+1)))) definition deg_id (n : ℕ) [H : is_succ n] : deg (pid (S n)) = (1 : ℤ) := by induction H with n; exact ap (πnSn (n+1)) (homotopy_group_functor_pid (succ n) (S (succ n)) (tr surf)) ⬝ πnSn_surf n definition deg_phomotopy {n : ℕ} [H : is_succ n] {f g : S n →* S n} (p : f ~* g) : deg f = deg g := begin induction H with n, exact ap (πnSn (n+1)) (homotopy_group_functor_phomotopy (succ n) p (tr surf)), end definition endomorphism_int (f : gℤ →g gℤ) (n : ℤ) : f n = f (1 : ℤ) *[ℤ] n := @endomorphism_int_unbundled f (homomorphism.addstruct f) n definition endomorphism_equiv_Z {X : Group} (e : X ≃g gℤ) {one : X} (p : e one = 1 :> ℤ) (φ : X →g X) (x : X) : e (φ x) = e (φ one) *[ℤ] e x := begin revert x, refine equiv_rect' (equiv_of_isomorphism e) _ _, intro n, refine endomorphism_int (e ∘g φ ∘g e⁻¹ᵍ) n ⬝ _, refine ap011 (@mul ℤ _) _ _, { esimp, apply ap (e ∘ φ), refine ap e⁻¹ᵍ p⁻¹ ⬝ _, exact to_left_inv (equiv_of_isomorphism e) one }, { symmetry, exact to_right_inv (equiv_of_isomorphism e) n} end definition deg_compose {n : ℕ} [H : is_succ n] (f g : S n →* S n) : deg (g ∘* f) = deg g *[ℤ] deg f := begin induction H with n, refine ap (πnSn (n+1)) (homotopy_group_functor_pcompose (succ n) g f (tr surf)) ⬝ _, apply endomorphism_equiv_Z !πnSn !πnSn_surf (π→g[n+1] g) end definition deg_equiv {n : ℕ} [H : is_succ n] (f : S n ≃* S n) : deg f = 1 ⊎ deg f = -1 := begin induction H with n, apply eq_one_or_eq_neg_one_of_mul_eq_one (deg f⁻¹ᵉ*), refine !deg_compose⁻¹ ⬝ _, refine deg_phomotopy (pright_inv f) ⬝ _, apply deg_id end end sphere