/- equalities between pointed homotopies and other facts about pointed types/functions/homotopies -/ -- Author: Floris van Doorn import types.pointed2 .move_to_lib open pointed eq equiv function is_equiv unit is_trunc trunc nat algebra sigma group lift option namespace pointed definition phomotopy_mk_eq {A B : Type*} {f g : A →* B} {h k : f ~ g} {h₀ : h pt ⬝ respect_pt g = respect_pt f} {k₀ : k pt ⬝ respect_pt g = respect_pt f} (p : h ~ k) (q : whisker_right (respect_pt g) (p pt) ⬝ k₀ = h₀) : phomotopy.mk h h₀ = phomotopy.mk k k₀ := phomotopy_eq p (idp ◾ to_right_inv !eq_con_inv_equiv_con_eq _ ⬝ q ⬝ (to_right_inv !eq_con_inv_equiv_con_eq _)⁻¹) section phsquare /- Squares of pointed homotopies -/ variables {A : Type*} {P : A → Type} {p₀ : P pt} {f f' f₀₀ f₂₀ f₄₀ f₀₂ f₂₂ f₄₂ f₀₄ f₂₄ f₄₄ : ppi P p₀} {p₁₀ : f₀₀ ~* f₂₀} {p₃₀ : f₂₀ ~* f₄₀} {p₀₁ : f₀₀ ~* f₀₂} {p₂₁ : f₂₀ ~* f₂₂} {p₄₁ : f₄₀ ~* f₄₂} {p₁₂ : f₀₂ ~* f₂₂} {p₃₂ : f₂₂ ~* f₄₂} {p₀₃ : f₀₂ ~* f₀₄} {p₂₃ : f₂₂ ~* f₂₄} {p₄₃ : f₄₂ ~* f₄₄} {p₁₄ : f₀₄ ~* f₂₄} {p₃₄ : f₂₄ ~* f₄₄} definition phtranspose (p : phsquare p₁₀ p₁₂ p₀₁ p₂₁) : phsquare p₀₁ p₂₁ p₁₀ p₁₂ := p⁻¹ definition eq_top_of_phsquare (p : phsquare p₁₀ p₁₂ p₀₁ p₂₁) : p₁₀ = p₀₁ ⬝* p₁₂ ⬝* p₂₁⁻¹* := eq_trans_symm_of_trans_eq p definition eq_bot_of_phsquare (p : phsquare p₁₀ p₁₂ p₀₁ p₂₁) : p₁₂ = p₀₁⁻¹* ⬝* p₁₀ ⬝* p₂₁ := eq_symm_trans_of_trans_eq p⁻¹ ⬝ !trans_assoc⁻¹ definition eq_left_of_phsquare (p : phsquare p₁₀ p₁₂ p₀₁ p₂₁) : p₀₁ = p₁₀ ⬝* p₂₁ ⬝* p₁₂⁻¹* := eq_top_of_phsquare (phtranspose p) definition eq_right_of_phsquare (p : phsquare p₁₀ p₁₂ p₀₁ p₂₁) : p₂₁ = p₁₀⁻¹* ⬝* p₀₁ ⬝* p₁₂ := eq_bot_of_phsquare (phtranspose p) end phsquare -- /- the pointed type of (unpointed) dependent maps -/ -- definition pupi [constructor] {A : Type} (P : A → Type*) : Type* := -- pointed.mk' (Πa, P a) -- definition loop_pupi_commute {A : Type} (B : A → Type*) : Ω(pupi B) ≃* pupi (λa, Ω (B a)) := -- pequiv_of_equiv eq_equiv_homotopy rfl -- definition equiv_pupi_right {A : Type} {P Q : A → Type*} (g : Πa, P a ≃* Q a) -- : pupi P ≃* pupi Q := -- pequiv_of_equiv (pi_equiv_pi_right g) -- begin esimp, apply eq_of_homotopy, intros a, esimp, exact (respect_pt (g a)) end -- definition pmap_eq_equiv {X Y : Type*} (f g : X →* Y) : (f = g) ≃ (f ~* g) := -- begin -- refine eq_equiv_fn_eq_of_equiv (@pmap.sigma_char X Y) f g ⬝e _, -- refine !sigma_eq_equiv ⬝e _, -- refine _ ⬝e (phomotopy.sigma_char f g)⁻¹ᵉ, -- fapply sigma_equiv_sigma, -- { esimp, apply eq_equiv_homotopy }, -- { induction g with g gp, induction Y with Y y0, esimp, intro p, induction p, esimp at *, -- refine !pathover_idp ⬝e _, refine _ ⬝e !eq_equiv_eq_symm, -- apply equiv_eq_closed_right, exact !idp_con⁻¹ } -- end /- todo: make type argument explicit in ppcompose_left and ppcompose_left_* -/ /- todo: delete papply_pcompose -/ /- todo: pmap_pbool_equiv is a special case of ppmap_pbool_pequiv. -/ definition ppcompose_left_pid [constructor] (A B : Type*) : ppcompose_left (pid B) ~* pid (ppmap A B) := phomotopy_mk_ppmap (λf, pid_pcompose f) (!trans_refl ⬝ !phomotopy_of_eq_of_phomotopy⁻¹) definition ppcompose_right_pid [constructor] (A B : Type*) : ppcompose_right (pid A) ~* pid (ppmap A B) := phomotopy_mk_ppmap (λf, pcompose_pid f) (!trans_refl ⬝ !phomotopy_of_eq_of_phomotopy⁻¹) section variables {A A' : Type*} {P : A → Type} {P' : A' → Type} {p₀ : P pt} {p₀' : P' pt} {k l : ppi P p₀} definition phomotopy_of_eq_inv (p : k = l) : phomotopy_of_eq p⁻¹ = (phomotopy_of_eq p)⁻¹* := begin induction p, exact !refl_symm⁻¹ end /- todo: replace regular pap -/ definition pap' (f : ppi P p₀ → ppi P' p₀') (p : k ~* l) : f k ~* f l := by induction p using phomotopy_rec_idp; reflexivity definition phomotopy_of_eq_ap (f : ppi P p₀ → ppi P' p₀') (p : k = l) : phomotopy_of_eq (ap f p) = pap' f (phomotopy_of_eq p) := begin induction p, exact !phomotopy_rec_idp_refl⁻¹ end end /- remove some duplicates: loop_ppmap_commute, loop_ppmap_pequiv, loop_ppmap_pequiv', pfunext -/ -- definition pfunext (X Y : Type*) : ppmap X (Ω Y) ≃* Ω (ppmap X Y) := -- (loop_ppmap_commute X Y)⁻¹ᵉ* -- definition loop_phomotopy [constructor] {A B : Type*} (f : A →* B) : Type* := -- pointed.MK (f ~* f) phomotopy.rfl -- definition ppcompose_left_loop_phomotopy [constructor] {A B C : Type*} (g : B →* C) {f : A →* B} -- {h : A →* C} (p : g ∘* f ~* h) : loop_phomotopy f →* loop_phomotopy h := -- pmap.mk (λq, p⁻¹* ⬝* pwhisker_left g q ⬝* p) -- (idp ◾** !pwhisker_left_refl ◾** idp ⬝ !trans_refl ◾** idp ⬝ !trans_left_inv) -- definition ppcompose_left_loop_phomotopy' [constructor] {A B C : Type*} (g : B →* C) (f : A →* B) -- : loop_phomotopy f →* loop_phomotopy (g ∘* f) := -- pmap.mk (λq, pwhisker_left g q) !pwhisker_left_refl -- definition loop_ppmap_pequiv' [constructor] (A B : Type*) : -- Ω(ppmap A B) ≃* loop_phomotopy (pconst A B) := -- pequiv_of_equiv (pmap_eq_equiv _ _) idp -- definition ppmap_loop_pequiv' [constructor] (A B : Type*) : -- loop_phomotopy (pconst A B) ≃* ppmap A (Ω B) := -- pequiv_of_equiv (!phomotopy.sigma_char ⬝e !pmap.sigma_char⁻¹ᵉ) idp -- definition loop_ppmap_pequiv [constructor] (A B : Type*) : Ω(ppmap A B) ≃* ppmap A (Ω B) := -- loop_ppmap_pequiv' A B ⬝e* ppmap_loop_pequiv' A B -- definition loop_ppmap_pequiv'_natural_right' {X X' : Type} (x₀ : X) (A : Type*) (f : X → X') : -- psquare (loop_ppmap_pequiv' A _) (loop_ppmap_pequiv' A _) -- (Ω→ (ppcompose_left (pmap_of_map f x₀))) -- (ppcompose_left_loop_phomotopy' (pmap_of_map f x₀) !pconst) := -- begin -- fapply phomotopy.mk, -- { esimp, intro p, -- refine _ ⬝ ap011 (λx y, phomotopy_of_eq (ap1_gen _ x y _)) -- proof !eq_of_phomotopy_refl⁻¹ qed proof !eq_of_phomotopy_refl⁻¹ qed, -- refine _ ⬝ ap phomotopy_of_eq !ap1_gen_idp_left⁻¹, -- exact !phomotopy_of_eq_pcompose_left⁻¹ }, -- { refine _ ⬝ !idp_con⁻¹, exact sorry } -- end -- definition loop_ppmap_pequiv'_natural_right {X X' : Type*} (A : Type*) (f : X →* X') : -- psquare (loop_ppmap_pequiv' A X) (loop_ppmap_pequiv' A X') -- (Ω→ (ppcompose_left f)) (ppcompose_left_loop_phomotopy f !pcompose_pconst) := -- begin -- induction X' with X' x₀', induction f with f f₀, esimp at f, esimp at f₀, induction f₀, -- apply psquare_of_phomotopy, -- exact sorry -- end -- definition ppmap_loop_pequiv'_natural_right {X X' : Type*} (A : Type*) (f : X →* X') : -- psquare (ppmap_loop_pequiv' A X) (ppmap_loop_pequiv' A X') -- (ppcompose_left_loop_phomotopy f !pcompose_pconst) (ppcompose_left (Ω→ f)) := -- begin -- exact sorry -- end -- definition loop_pmap_commute_natural_right_direct {X X' : Type*} (A : Type*) (f : X →* X') : -- psquare (loop_ppmap_pequiv A X) (loop_ppmap_pequiv A X') -- (Ω→ (ppcompose_left f)) (ppcompose_left (Ω→ f)) := -- begin -- induction X' with X' x₀', induction f with f f₀, esimp at f, esimp at f₀, induction f₀, -- -- refine _ ⬝* _ ◾* _, rotate 4, -- fapply phomotopy.mk, -- { intro p, esimp, esimp [pmap_eq_equiv, pcompose_pconst], exact sorry }, -- { exact sorry } -- end -- definition loop_pmap_commute_natural_left {A A' : Type*} (X : Type*) (f : A' →* A) : -- psquare (loop_ppmap_commute A X) (loop_ppmap_commute A' X) -- (Ω→ (ppcompose_right f)) (ppcompose_right f) := -- sorry -- definition loop_pmap_commute_natural_right {X X' : Type*} (A : Type*) (f : X →* X') : -- psquare (loop_ppmap_commute A X) (loop_ppmap_commute A X') -- (Ω→ (ppcompose_left f)) (ppcompose_left (Ω→ f)) := -- loop_ppmap_pequiv'_natural_right A f ⬝h* ppmap_loop_pequiv'_natural_right A f /- Do we want to use a structure of homotopies between pointed homotopies? Or are equalities fine? If we set up things more generally, we could define this as "pointed homotopies between the dependent pointed maps p and q" -/ structure phomotopy2 {A B : Type*} {f g : A →* B} (p q : f ~* g) : Type := (homotopy_eq : p ~ q) (homotopy_pt_eq : whisker_right (respect_pt g) (homotopy_eq pt) ⬝ to_homotopy_pt q = to_homotopy_pt p) /- this sets it up more generally, for illustrative purposes -/ structure ppi' (A : Type*) (P : A → Type) (p : P pt) := (to_fun : Π a : A, P a) (resp_pt : to_fun (Point A) = p) attribute ppi'.to_fun [coercion] definition phomotopy' {A : Type*} {P : A → Type} {x : P pt} (f g : ppi' A P x) : Type := ppi' A (λa, f a = g a) (ppi'.resp_pt f ⬝ (ppi'.resp_pt g)⁻¹) definition phomotopy2' {A : Type*} {P : A → Type} {x : P pt} {f g : ppi' A P x} (p q : phomotopy' f g) : Type := phomotopy' p q -- infix ` ~*2 `:50 := phomotopy2 -- variables {A B : Type*} {f g : A →* B} (p q : f ~* g) -- definition phomotopy_eq_equiv_phomotopy2 : p = q ≃ p ~*2 q := -- sorry definition pconst_pcompose_phomotopy {A B C : Type*} {f f' : A →* B} (p : f ~* f') : pwhisker_left (pconst B C) p ⬝* pconst_pcompose f' = pconst_pcompose f := begin fapply phomotopy_eq, { intro a, apply ap_constant }, { induction p using phomotopy_rec_idp, induction B with B b₀, induction f with f f₀, esimp at *, induction f₀, reflexivity } end /- Homotopy between a function and its eta expansion -/ definition papply_point [constructor] (A B : Type*) : papply B pt ~* pconst (ppmap A B) B := phomotopy.mk (λf, respect_pt f) idp definition pmap_swap_map [constructor] {A B C : Type*} (f : A →* ppmap B C) : ppmap B (ppmap A C) := begin fapply pmap.mk, { intro b, exact papply C b ∘* f }, { apply eq_of_phomotopy, exact pwhisker_right f (papply_point B C) ⬝* !pconst_pcompose } end definition pmap_swap_map_pconst (A B C : Type*) : pmap_swap_map (pconst A (ppmap B C)) ~* pconst B (ppmap A C) := begin fapply phomotopy_mk_ppmap, { intro b, reflexivity }, { refine !refl_trans ⬝ !phomotopy_of_eq_of_phomotopy⁻¹ } end definition papply_pmap_swap_map [constructor] {A B C : Type*} (f : A →* ppmap B C) (a : A) : papply C a ∘* pmap_swap_map f ~* f a := begin fapply phomotopy.mk, { intro b, reflexivity }, { exact !idp_con ⬝ !ap_eq_of_phomotopy⁻¹ } end definition pmap_swap_map_pmap_swap_map {A B C : Type*} (f : A →* ppmap B C) : pmap_swap_map (pmap_swap_map f) ~* f := begin fapply phomotopy_mk_ppmap, { exact papply_pmap_swap_map f }, { refine _ ⬝ !phomotopy_of_eq_of_phomotopy⁻¹, fapply phomotopy_mk_eq, intro b, exact !idp_con, refine !whisker_right_idp ◾ (!idp_con ◾ idp) ⬝ _ ⬝ !idp_con⁻¹ ◾ idp, symmetry, exact sorry } end definition pmap_swap [constructor] (A B C : Type*) : ppmap A (ppmap B C) →* ppmap B (ppmap A C) := begin fapply pmap.mk, { exact pmap_swap_map }, { exact eq_of_phomotopy (pmap_swap_map_pconst A B C) } end definition pmap_swap_pequiv [constructor] (A B C : Type*) : ppmap A (ppmap B C) ≃* ppmap B (ppmap A C) := begin fapply pequiv_of_pmap, { exact pmap_swap A B C }, fapply adjointify, { exact pmap_swap B A C }, { intro f, apply eq_of_phomotopy, exact pmap_swap_map_pmap_swap_map f }, { intro f, apply eq_of_phomotopy, exact pmap_swap_map_pmap_swap_map f } end -- this should replace pnatural_square definition pnatural_square2 {A B : Type} (X : B → Type*) (Y : B → Type*) {f g : A → B} (h : Πa, X (f a) →* Y (g a)) {a a' : A} (p : a = a') : h a' ∘* ptransport X (ap f p) ~* ptransport Y (ap g p) ∘* h a := by induction p; exact !pcompose_pid ⬝* !pid_pcompose⁻¹* definition ptransport_ap {A B : Type} (X : B → Type*) (f : A → B) {a a' : A} (p : a = a') : ptransport X (ap f p) ~* ptransport (X ∘ f) p := by induction p; reflexivity definition ptransport_constant (A : Type) (B : Type*) {a a' : A} (p : a = a') : ptransport (λ(a : A), B) p ~* pid B := by induction p; reflexivity definition ptransport_natural {A : Type} (X : A → Type*) (Y : A → Type*) (h : Πa, X a →* Y a) {a a' : A} (p : a = a') : h a' ∘* ptransport X p ~* ptransport Y p ∘* h a := by induction p; exact !pcompose_pid ⬝* !pid_pcompose⁻¹* section psquare variables {A A' A₀₀ A₂₀ A₄₀ A₀₂ A₂₂ A₄₂ A₀₄ A₂₄ A₄₄ : Type*} {f₁₀ f₁₀' : A₀₀ →* A₂₀} {f₃₀ : A₂₀ →* A₄₀} {f₀₁ f₀₁' : A₀₀ →* A₀₂} {f₂₁ f₂₁' : A₂₀ →* A₂₂} {f₄₁ f₄₁' : A₄₀ →* A₄₂} {f₁₂ f₁₂' : A₀₂ →* A₂₂} {f₃₂ : A₂₂ →* A₄₂} {f₀₃ : A₀₂ →* A₀₄} {f₂₃ : A₂₂ →* A₂₄} {f₄₃ : A₄₂ →* A₄₄} {f₁₄ f₁₄' : A₀₄ →* A₂₄} {f₃₄ : A₂₄ →* A₄₄} definition pvconst_square_pcompose (f₃₀ : A₂₀ →* A₄₀) (f₁₀ : A₀₀ →* A₂₀) (f₃₂ : A₂₂ →* A₄₂) (f₁₂ : A₀₂ →* A₂₂) : pvconst_square (f₃₀ ∘* f₁₀) (f₃₂ ∘* f₁₂) = pvconst_square f₁₀ f₁₂ ⬝h* pvconst_square f₃₀ f₃₂ := begin refine eq_right_of_phsquare !passoc_pconst_left ◾** !passoc_pconst_right⁻¹⁻²** ⬝ idp ◾** (!trans_symm ⬝ !trans_symm ◾** idp) ⬝ !trans_assoc⁻¹ ⬝ _ ◾** idp, refine !trans_assoc⁻¹ ⬝ _ ◾** !pwhisker_left_symm⁻¹ ⬝ !trans_assoc ⬝ idp ◾** !pwhisker_left_trans⁻¹, apply trans_symm_eq_of_eq_trans, refine _ ⬝ idp ◾** !passoc_pconst_middle⁻¹ ⬝ !trans_assoc⁻¹ ⬝ !trans_assoc⁻¹, refine _ ◾** idp ⬝ !trans_assoc, refine idp ◾** _ ⬝ !trans_assoc⁻¹, refine ap (pwhisker_right f₁₀) _ ⬝ !pwhisker_right_trans, refine !trans_refl⁻¹ ⬝ idp ◾** !trans_left_inv⁻¹ ⬝ !trans_assoc⁻¹, end definition phconst_square_pcompose (f₀₃ : A₀₂ →* A₀₄) (f₁₀ : A₀₀ →* A₂₀) (f₂₃ : A₂₂ →* A₂₄) (f₂₁ : A₂₀ →* A₂₂) : phconst_square (f₀₃ ∘* f₀₁) (f₂₃ ∘* f₁₂) = phconst_square f₀₁ f₁₂ ⬝v* phconst_square f₀₃ f₂₃ := sorry definition rfl_phomotopy_hconcat (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) : phomotopy.rfl ⬝ph* p = p := idp ◾** (ap (pwhisker_left f₁₂) !refl_symm ⬝ !pwhisker_left_refl) ⬝ !trans_refl definition hconcat_phomotopy_rfl (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) : p ⬝hp* phomotopy.rfl = p := !pwhisker_right_refl ◾** idp ⬝ !refl_trans definition rfl_phomotopy_vconcat (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) : phomotopy.rfl ⬝pv* p = p := !pwhisker_left_refl ◾** idp ⬝ !refl_trans definition vconcat_phomotopy_rfl (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) : p ⬝vp* phomotopy.rfl = p := idp ◾** (ap (pwhisker_right f₀₁) !refl_symm ⬝ !pwhisker_right_refl) ⬝ !trans_refl definition phomotopy_hconcat_phconcat (p : f₀₁' ~* f₀₁) (q : psquare f₁₀ f₁₂ f₀₁ f₂₁) (r : psquare f₃₀ f₃₂ f₂₁ f₄₁) : (p ⬝ph* q) ⬝h* r = p ⬝ph* (q ⬝h* r) := begin induction p using phomotopy_rec_idp, exact !refl_phomotopy_hconcat ◾h* idp ⬝ !refl_phomotopy_hconcat⁻¹ end definition phconcat_hconcat_phomotopy (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) (q : psquare f₃₀ f₃₂ f₂₁ f₄₁) (r : f₄₁' ~* f₄₁) : (p ⬝h* q) ⬝hp* r = p ⬝h* (q ⬝hp* r) := begin induction r using phomotopy_rec_idp, exact !hconcat_phomotopy_rfl ⬝ idp ◾h* !hconcat_phomotopy_rfl⁻¹ end definition phomotopy_hconcat_phomotopy (p : f₀₁' ~* f₀₁) (q : psquare f₁₀ f₁₂ f₀₁ f₂₁) (r : f₂₁' ~* f₂₁) : (p ⬝ph* q) ⬝hp* r = p ⬝ph* (q ⬝hp* r) := begin induction r using phomotopy_rec_idp, exact !hconcat_phomotopy_rfl ⬝ idp ◾ph* !hconcat_phomotopy_rfl⁻¹ end definition hconcat_phomotopy_phconcat (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) (q : f₂₁' ~* f₂₁) (r : psquare f₃₀ f₃₂ f₂₁' f₄₁) : (p ⬝hp* q) ⬝h* r = p ⬝h* (q⁻¹* ⬝ph* r) := begin induction q using phomotopy_rec_idp, exact !hconcat_phomotopy_rfl ◾h* idp ⬝ idp ◾h* (!refl_symm ◾ph* idp ⬝ !refl_phomotopy_hconcat)⁻¹ end definition phconcat_phomotopy_hconcat (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) (q : f₂₁ ~* f₂₁') (r : psquare f₃₀ f₃₂ f₂₁' f₄₁) : p ⬝h* (q ⬝ph* r) = (p ⬝hp* q⁻¹*) ⬝h* r := begin induction q using phomotopy_rec_idp, exact idp ◾h* !refl_phomotopy_hconcat ⬝ (idp ◾hp* !refl_symm ⬝ !hconcat_phomotopy_rfl)⁻¹ ◾h* idp end definition hconcat_phomotopy_hconcat_cancel (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) (q : f₂₁' ~* f₂₁) (r : psquare f₃₀ f₃₂ f₂₁ f₄₁) : (p ⬝hp* q) ⬝h* (q ⬝ph* r) = p ⬝h* r := begin induction q using phomotopy_rec_idp, exact !hconcat_phomotopy_rfl ◾h* !refl_phomotopy_hconcat end definition phomotopy_hconcat_phinverse {f₁₀ : A₀₀ ≃* A₂₀} {f₁₂ : A₀₂ ≃* A₂₂} (p : f₀₁' ~* f₀₁) (q : psquare f₁₀ f₁₂ f₀₁ f₂₁) : (p ⬝ph* q)⁻¹ʰ* = q⁻¹ʰ* ⬝hp* p := begin induction p using phomotopy_rec_idp, exact !refl_phomotopy_hconcat⁻²ʰ* ⬝ !hconcat_phomotopy_rfl⁻¹ end definition hconcat_phomotopy_phinverse {f₁₀ : A₀₀ ≃* A₂₀} {f₁₂ : A₀₂ ≃* A₂₂} (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) (q : f₂₁' ~* f₂₁) : (p ⬝hp* q)⁻¹ʰ* = q ⬝ph* p⁻¹ʰ* := begin induction q using phomotopy_rec_idp, exact !hconcat_phomotopy_rfl⁻²ʰ* ⬝ !refl_phomotopy_hconcat⁻¹ end definition pvconst_square_phinverse (f₁₀ : A₀₀ ≃* A₂₀) (f₁₂ : A₀₂ ≃* A₂₂) : (pvconst_square f₁₀ f₁₂)⁻¹ʰ* = pvconst_square f₁₀⁻¹ᵉ* f₁₂⁻¹ᵉ* := begin exact sorry end definition ppcompose_left_phomotopy_hconcat (A : Type*) (p : f₀₁' ~* f₀₁) (q : psquare f₁₀ f₁₂ f₀₁ f₂₁) : ppcompose_left_psquare (p ⬝ph* q) = @ppcompose_left_phomotopy A _ _ _ _ p ⬝ph* ppcompose_left_psquare q := sorry --used definition ppcompose_left_hconcat_phomotopy (A : Type*) (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) (q : f₂₁' ~* f₂₁) : ppcompose_left_psquare (p ⬝hp* q) = ppcompose_left_psquare p ⬝hp* @ppcompose_left_phomotopy A _ _ _ _ q := sorry definition ppcompose_left_pvconst_square (A : Type*) (f₁₀ : A₀₀ →* A₂₀) (f₁₂ : A₀₂ →* A₂₂) : ppcompose_left_psquare (pvconst_square f₁₀ f₁₂) = !ppcompose_left_pconst ⬝ph* pvconst_square (ppcompose_left f₁₀) (@ppcompose_left A _ _ f₁₂) ⬝hp* !ppcompose_left_pconst := sorry end psquare definition ap1_pequiv_ap {A : Type} (B : A → Type*) {a a' : A} (p : a = a') : Ω→ (pequiv_ap B p) ~* pequiv_ap (Ω ∘ B) p := begin induction p, apply ap1_pid end definition pequiv_ap_natural {A : Type} (B C : A → Type*) {a a' : A} (p : a = a') (f : Πa, B a →* C a) : psquare (pequiv_ap B p) (pequiv_ap C p) (f a) (f a') := begin induction p, exact phrfl end definition is_contr_loop (A : Type*) [is_set A] : is_contr (Ω A) := is_contr.mk idp (λa, !is_prop.elim) definition is_contr_loop_of_is_contr {A : Type*} (H : is_contr A) : is_contr (Ω A) := is_contr_loop A definition is_contr_punit [instance] : is_contr punit := is_contr_unit definition pequiv_of_is_contr (A B : Type*) (HA : is_contr A) (HB : is_contr B) : A ≃* B := pequiv_punit_of_is_contr A _ ⬝e* (pequiv_punit_of_is_contr B _)⁻¹ᵉ* definition loop_pequiv_punit_of_is_set (X : Type*) [is_set X] : Ω X ≃* punit := pequiv_punit_of_is_contr _ (is_contr_loop X) definition loop_punit : Ω punit ≃* punit := loop_pequiv_punit_of_is_set punit definition add_point_functor' [unfold 4] {A B : Type} (e : A → B) (a : A₊) : B₊ := begin induction a with a, exact none, exact some (e a) end definition add_point_functor [constructor] {A B : Type} (e : A → B) : A₊ →* B₊ := pmap.mk (add_point_functor' e) idp definition add_point_functor_compose {A B C : Type} (f : B → C) (e : A → B) : add_point_functor (f ∘ e) ~* add_point_functor f ∘* add_point_functor e := begin fapply phomotopy.mk, { intro x, induction x: reflexivity }, reflexivity end definition add_point_functor_id (A : Type) : add_point_functor id ~* pid A₊ := begin fapply phomotopy.mk, { intro x, induction x: reflexivity }, reflexivity end definition add_point_functor_phomotopy {A B : Type} {e e' : A → B} (p : e ~ e') : add_point_functor e ~* add_point_functor e' := begin fapply phomotopy.mk, { intro x, induction x with a, reflexivity, exact ap some (p a) }, reflexivity end definition add_point_pequiv {A B : Type} (e : A ≃ B) : A₊ ≃* B₊ := pequiv.MK (add_point_functor e) (add_point_functor e⁻¹ᵉ) abstract !add_point_functor_compose⁻¹* ⬝* add_point_functor_phomotopy (left_inv e) ⬝* !add_point_functor_id end abstract !add_point_functor_compose⁻¹* ⬝* add_point_functor_phomotopy (right_inv e) ⬝* !add_point_functor_id end definition add_point_over [unfold 3] {A : Type} (B : A → Type*) : A₊ → Type* | (some a) := B a | none := plift punit definition add_point_over_pequiv {A : Type} {B B' : A → Type*} (e : Πa, B a ≃* B' a) : Π(a : A₊), add_point_over B a ≃* add_point_over B' a | (some a) := e a | none := pequiv.rfl definition phomotopy_group_plift_punit.{u} (n : ℕ) [H : is_at_least_two n] : πag[n] (plift.{0 u} punit) ≃g trivial_ab_group_lift.{u} := begin induction H with n, have H : 0 <[ℕ] n+2, from !zero_lt_succ, have is_set unit, from _, have is_trunc (trunc_index.of_nat 0) punit, from this, exact isomorphism_of_is_contr (@trivial_homotopy_group_of_is_trunc _ _ _ !is_trunc_lift H) !is_trunc_lift end definition pmap_of_map_pt [constructor] {A : Type*} {B : Type} (f : A → B) : A →* pointed.MK B (f pt) := pmap.mk f idp definition papply_natural_right [constructor] {A B B' : Type*} (f : B →* B') (a : A) : psquare (papply B a) (papply B' a) (ppcompose_left f) f := begin fapply phomotopy.mk, { intro g, reflexivity }, { refine !idp_con ⬝ !ap_eq_of_phomotopy ⬝ !idp_con⁻¹ } end -- definition foo {A B : Type} {f : A → B} {a₀ a₁ a₂ : A} {b₀ b₁ b₂ : B} -- {p₀ : a₀ = a₀} {p₁ : a₀ = a₀} (q₀ : ap f p₀ = idp) (q₁ : ap f p₁ = idp) : -- whisker_right (ap f p₁) (idp_con (ap f p₀⁻¹) ⬝ !ap_inv ⬝ q₀⁻²)⁻¹ ⬝ !con.assoc ⬝ -- whisker_left idp (con_eq_of_eq_con_inv (eq_con_inv_of_con_eq _)) ⬝ _ -- = !idp_con ⬝ q₁ := -- _ /- whisker_right (ap (λ f, pppi.to_fun f a) (eq_of_phomotopy (pcompose_pconst (pconst B B')))) (idp_con (ap (λ y, pppi.to_fun y a) (eq_of_phomotopy (pconst_pcompose (ppi_const (λ a, B))))⁻¹) ⬝ ap_inv (λ y, pppi.to_fun y a) (eq_of_phomotopy (pconst_pcompose (ppi_const (λ a, B)))) ⬝ inverse2 (ap_eq_of_phomotopy (pconst_pcompose (ppi_const (λ a, B))) a))⁻¹ ⬝ (con.assoc (ppi.to_fun (pvconst_square (papply B a) (papply B' a)) (ppi_const (λ a, B))) (ap (λ f, pppi.to_fun f a) (eq_of_phomotopy (pconst_pcompose (ppi_const (λ a, B))))⁻¹) (ap (λ f, pppi.to_fun f a) (eq_of_phomotopy (pcompose_pconst (pconst B B')))) ⬝ whisker_left (ppi.to_fun (pvconst_square (papply B a) (papply B' a)) (ppi_const (λ a, B))) (con_eq_of_eq_con_inv (eq_con_inv_of_con_eq (pwhisker_left_1 B' (ppmap A B) (ppmap A B') (papply B' a) (pconst (ppmap A B) (ppmap A B')) (ppcompose_left (pconst B B')) (ppcompose_left_pconst A B B')⁻¹*))) ⬝ respect_pt (pvconst_square (papply B a) (papply B' a))) = idp_con (ap (λ f, pppi.to_fun f a) (eq_of_phomotopy (pcompose_pconst (pconst B B')))) ⬝ ap_eq_of_phomotopy (pcompose_pconst (pconst B B')) a -/ definition papply_natural_right_pconst {A : Type*} (B B' : Type*) (a : A) : papply_natural_right (pconst B B') a = !ppcompose_left_pconst ⬝ph* !pvconst_square := begin fapply phomotopy_mk_eq, { intro g, symmetry, refine !idp_con ⬝ !ap_inv ⬝ !ap_eq_of_phomotopy⁻² }, { esimp [pvconst_square], --esimp [inv_con_eq_of_eq_con, pwhisker_left_1] exact sorry } end /- TODO: computation rule -/ open pi definition fiberwise_pointed_map_rec {A : Type} {B : A → Type*} (P : Π(C : A → Type*) (g : Πa, B a →* C a), Type) (H : Π(C : A → Type) (g : Πa, B a → C a), P _ (λa, pmap_of_map_pt (g a))) : Π⦃C : A → Type*⦄ (g : Πa, B a →* C a), P C g := begin refine equiv_rect (!sigma_pi_equiv_pi_sigma ⬝e arrow_equiv_arrow_right A !pType.sigma_char⁻¹ᵉ) _ _, intro R, cases R with R r₀, refine equiv_rect (!sigma_pi_equiv_pi_sigma ⬝e pi_equiv_pi_right (λa, !pmap.sigma_char⁻¹ᵉ)) _ _, intro g, cases g with g g₀, esimp at (g, g₀), revert g₀, change (Π(g : (λa, g a (Point (B a))) ~ r₀), _), refine homotopy.rec_idp _ _, esimp, apply H end definition ap1_gen_idp_eq {A B : Type} (f : A → B) {a : A} (q : f a = f a) (r : q = idp) : ap1_gen_idp f q = ap (λx, ap1_gen f x x idp) r := begin cases r, reflexivity end definition pointed_change_point [constructor] (A : Type*) {a : A} (p : a = pt) : pointed.MK A a ≃* A := pequiv_of_eq_pt p ⬝e* (pointed_eta_pequiv A)⁻¹ᵉ* definition change_path_psquare {A B : Type*} (f : A →* B) {a' : A} {b' : B} (p : a' = pt) (q : pt = b') : psquare (pointed_change_point _ p) (pointed_change_point _ q⁻¹) (pmap.mk f (ap f p ⬝ respect_pt f ⬝ q)) f := begin fapply phomotopy.mk, exact homotopy.rfl, exact !idp_con ⬝ !ap_id ◾ !ap_id ⬝ !con_inv_cancel_right ⬝ whisker_right _ (ap02 f !ap_id⁻¹) end definition change_path_psquare_cod {A B : Type*} (f : A →* B) {b' : B} (p : pt = b') : f ~* pointed_change_point _ p⁻¹ ∘* pmap.mk f (respect_pt f ⬝ p) := begin fapply phomotopy.mk, exact homotopy.rfl, exact !idp_con ⬝ !ap_id ◾ !ap_id ⬝ !con_inv_cancel_right end definition change_path_psquare_cod' {A B : Type} (f : A → B) (a : A) {b' : B} (p : f a = b') : pointed_change_point _ p ∘* pmap_of_map f a ~* pmap.mk f p := begin fapply phomotopy.mk, exact homotopy.rfl, refine whisker_left idp (ap_id p)⁻¹ end structure deloopable.{u} [class] (A : pType.{u}) : Type.{u+1} := (deloop : pType.{u}) (deloop_pequiv : Ω deloop ≃* A) abbreviation deloop [unfold 2] := deloopable.deloop abbreviation deloop_pequiv [unfold 2] := deloopable.deloop_pequiv definition deloopable_loop [instance] [constructor] (A : Type*) : deloopable (Ω A) := deloopable.mk A pequiv.rfl definition deloopable_loopn [instance] [priority 500] (n : ℕ) [H : is_succ n] (A : Type*) : deloopable (Ω[n] A) := by induction H with n; exact deloopable.mk (Ω[n] A) pequiv.rfl definition inf_group_of_deloopable (A : Type*) [deloopable A] : inf_group A := inf_group_equiv_closed (deloop_pequiv A) _ definition InfGroup_of_deloopable (A : Type*) [deloopable A] : InfGroup := InfGroup.mk A (inf_group_of_deloopable A) definition deloop_isomorphism [constructor] (A : Type*) [deloopable A] : Ωg (deloop A) ≃∞g InfGroup_of_deloopable A := InfGroup_equiv_closed_isomorphism (Ωg (deloop A)) (deloop_pequiv A) end pointed