/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn, Egbert Rijke Constructions with groups -/ import hit.set_quotient .subgroup ..move_to_lib open eq algebra is_trunc set_quotient relation sigma sigma.ops prod trunc function equiv namespace group variables {G G' : Group} (H : subgroup_rel G) (N : normal_subgroup_rel G) {g g' h h' k : G} variables {A B : AbGroup} /- Quotient Group -/ definition homotopy_of_homomorphism_eq {f g : G →g G'}(p : f = g) : f ~ g := λx : G , ap010 group_fun p x definition quotient_rel (g h : G) : Prop := N (g * h⁻¹) variable {N} -- We prove that quotient_rel is an equivalence relation theorem quotient_rel_refl (g : G) : quotient_rel N g g := transport (λx, N x) !mul.right_inv⁻¹ (subgroup_has_one N) theorem quotient_rel_symm (r : quotient_rel N g h) : quotient_rel N h g := transport (λx, N x) (!mul_inv ⬝ ap (λx, x * _) !inv_inv) (subgroup_respect_inv N r) theorem quotient_rel_trans (r : quotient_rel N g h) (s : quotient_rel N h k) : quotient_rel N g k := have H1 : N ((g * h⁻¹) * (h * k⁻¹)), from subgroup_respect_mul N r s, have H2 : (g * h⁻¹) * (h * k⁻¹) = g * k⁻¹, from calc (g * h⁻¹) * (h * k⁻¹) = ((g * h⁻¹) * h) * k⁻¹ : by rewrite [mul.assoc (g * h⁻¹)] ... = g * k⁻¹ : by rewrite inv_mul_cancel_right, show N (g * k⁻¹), by rewrite [-H2]; exact H1 theorem is_equivalence_quotient_rel : is_equivalence (quotient_rel N) := is_equivalence.mk quotient_rel_refl (λg h, quotient_rel_symm) (λg h k, quotient_rel_trans) -- We prove that quotient_rel respects inverses and multiplication, so -- it is a congruence relation theorem quotient_rel_resp_inv (r : quotient_rel N g h) : quotient_rel N g⁻¹ h⁻¹ := have H1 : N (g⁻¹ * (h * g⁻¹) * g), from is_normal_subgroup' N g (quotient_rel_symm r), have H2 : g⁻¹ * (h * g⁻¹) * g = g⁻¹ * h⁻¹⁻¹, from calc g⁻¹ * (h * g⁻¹) * g = g⁻¹ * h * g⁻¹ * g : by rewrite -mul.assoc ... = g⁻¹ * h : inv_mul_cancel_right ... = g⁻¹ * h⁻¹⁻¹ : by rewrite algebra.inv_inv, show N (g⁻¹ * h⁻¹⁻¹), by rewrite [-H2]; exact H1 theorem quotient_rel_resp_mul (r : quotient_rel N g h) (r' : quotient_rel N g' h') : quotient_rel N (g * g') (h * h') := have H1 : N (g * ((g' * h'⁻¹) * h⁻¹)), from normal_subgroup_insert N r' r, have H2 : g * ((g' * h'⁻¹) * h⁻¹) = (g * g') * (h * h')⁻¹, from calc g * ((g' * h'⁻¹) * h⁻¹) = g * (g' * (h'⁻¹ * h⁻¹)) : by rewrite [mul.assoc] ... = (g * g') * (h'⁻¹ * h⁻¹) : mul.assoc ... = (g * g') * (h * h')⁻¹ : by rewrite [mul_inv], show N ((g * g') * (h * h')⁻¹), from transport (λx, N x) H2 H1 local attribute is_equivalence_quotient_rel [instance] variable (N) definition qg : Type := set_quotient (quotient_rel N) variable {N} local attribute qg [reducible] definition quotient_one [constructor] : qg N := class_of one definition quotient_inv [unfold 3] : qg N → qg N := quotient_unary_map has_inv.inv (λg g' r, quotient_rel_resp_inv r) definition quotient_mul [unfold 3 4] : qg N → qg N → qg N := quotient_binary_map has_mul.mul (λg g' r h h' r', quotient_rel_resp_mul r r') section local notation 1 := quotient_one local postfix ⁻¹ := quotient_inv local infix * := quotient_mul theorem quotient_mul_assoc (g₁ g₂ g₃ : qg N) : g₁ * g₂ * g₃ = g₁ * (g₂ * g₃) := begin refine set_quotient.rec_prop _ g₁, refine set_quotient.rec_prop _ g₂, refine set_quotient.rec_prop _ g₃, clear g₁ g₂ g₃, intro g₁ g₂ g₃, exact ap class_of !mul.assoc end theorem quotient_one_mul (g : qg N) : 1 * g = g := begin refine set_quotient.rec_prop _ g, clear g, intro g, exact ap class_of !one_mul end theorem quotient_mul_one (g : qg N) : g * 1 = g := begin refine set_quotient.rec_prop _ g, clear g, intro g, exact ap class_of !mul_one end theorem quotient_mul_left_inv (g : qg N) : g⁻¹ * g = 1 := begin refine set_quotient.rec_prop _ g, clear g, intro g, exact ap class_of !mul.left_inv end theorem quotient_mul_comm {G : AbGroup} {N : normal_subgroup_rel G} (g h : qg N) : g * h = h * g := begin refine set_quotient.rec_prop _ g, clear g, intro g, refine set_quotient.rec_prop _ h, clear h, intro h, apply ap class_of, esimp, apply mul.comm end end variable (N) definition group_qg [constructor] : group (qg N) := group.mk quotient_mul _ quotient_mul_assoc quotient_one quotient_one_mul quotient_mul_one quotient_inv quotient_mul_left_inv definition quotient_group [constructor] : Group := Group.mk _ (group_qg N) definition ab_group_qg [constructor] {G : AbGroup} (N : normal_subgroup_rel G) : ab_group (qg N) := ⦃ab_group, group_qg N, mul_comm := quotient_mul_comm⦄ definition quotient_ab_group [constructor] {G : AbGroup} (N : subgroup_rel G) : AbGroup := AbGroup.mk _ (ab_group_qg (normal_subgroup_rel_ab N)) definition qg_map [constructor] : G →g quotient_group N := homomorphism.mk class_of (λ g h, idp) definition ab_qg_map {G : AbGroup} (N : subgroup_rel G) : G →g quotient_ab_group N := begin fapply homomorphism.mk, exact class_of, exact λ g h, idp end definition is_surjective_ab_qg_map {A : AbGroup} (N : subgroup_rel A) : is_surjective (ab_qg_map N) := begin intro x, induction x, fapply image.mk, exact a, reflexivity, apply is_prop.elimo end namespace quotient notation `⟦`:max a `⟧`:0 := qg_map a _ end quotient open quotient variable {N} definition qg_map_eq_one (g : G) (H : N g) : qg_map N g = 1 := begin apply eq_of_rel, have e : (g * 1⁻¹ = g), from calc g * 1⁻¹ = g * 1 : one_inv ... = g : mul_one, unfold quotient_rel, rewrite e, exact H end definition ab_qg_map_eq_one {K : subgroup_rel A} (g :A) (H : K g) : ab_qg_map K g = 1 := begin apply eq_of_rel, have e : (g * 1⁻¹ = g), from calc g * 1⁻¹ = g * 1 : one_inv ... = g : mul_one, unfold quotient_rel, xrewrite e, exact H end --- there should be a smarter way to do this!! Please have a look, Floris. definition rel_of_qg_map_eq_one (g : G) (H : qg_map N g = 1) : N g := begin have e : (g * 1⁻¹ = g), from calc g * 1⁻¹ = g * 1 : one_inv ... = g : mul_one, rewrite (inverse e), apply rel_of_eq _ H end definition quotient_group_elim_fun [unfold 6] (f : G →g G') (H : Π⦃g⦄, N g → f g = 1) (g : quotient_group N) : G' := begin refine set_quotient.elim f _ g, intro g h K, apply eq_of_mul_inv_eq_one, have e : f (g * h⁻¹) = f g * (f h)⁻¹, from calc f (g * h⁻¹) = f g * (f h⁻¹) : to_respect_mul ... = f g * (f h)⁻¹ : to_respect_inv, rewrite (inverse e), apply H, exact K end definition quotient_group_elim [constructor] (f : G →g G') (H : Π⦃g⦄, N g → f g = 1) : quotient_group N →g G' := begin fapply homomorphism.mk, -- define function { exact quotient_group_elim_fun f H }, { intro g h, induction g using set_quotient.rec_prop with g, induction h using set_quotient.rec_prop with h, krewrite (inverse (to_respect_mul (qg_map N) g h)), unfold qg_map, esimp, exact to_respect_mul f g h } end definition quotient_group_compute (f : G →g G') (H : Π⦃g⦄, N g → f g = 1) : quotient_group_elim f H ∘g qg_map N ~ f := begin intro g, reflexivity end definition gelim_unique (f : G →g G') (H : Π⦃g⦄, N g → f g = 1) (k : quotient_group N →g G') : ( k ∘g qg_map N ~ f ) → k ~ quotient_group_elim f H := begin intro K cg, induction cg using set_quotient.rec_prop with g, exact K g end definition qg_universal_property (f : G →g G') (H : Π⦃g⦄, N g → f g = 1) : is_contr (Σ(g : quotient_group N →g G'), g ∘g qg_map N = f) := begin fapply is_contr.mk, -- give center of contraction { fapply sigma.mk, exact quotient_group_elim f H, apply homomorphism_eq, exact quotient_group_compute f H }, -- give contraction { intro pair, induction pair with g p, fapply sigma_eq, {esimp, apply homomorphism_eq, symmetry, exact gelim_unique f H g (homotopy_of_homomorphism_eq p)}, {fapply is_prop.elimo} } end ------------------------------------------------ -- FIRST ISOMORPHISM THEOREM definition kernel_quotient_extension {A B : AbGroup} (f : A →g B) : quotient_ab_group (kernel_subgroup f) →g B := begin fapply quotient_group_elim f, intro a, intro p, exact p end definition kernel_quotient_extension_triangle {A B : AbGroup} (f : A →g B) : kernel_quotient_extension f ∘g ab_qg_map (kernel_subgroup f) ~ f := begin intro a, apply quotient_group_compute end definition is_embedding_kernel_quotient_extension {A B : AbGroup} (f : A →g B) : is_embedding (kernel_quotient_extension f) := begin fapply is_embedding_homomorphism, intro x, note H := is_surjective_ab_qg_map (kernel_subgroup f) x, induction H, induction p, intro q, apply qg_map_eq_one, refine _ ⬝ q, symmetry, rexact kernel_quotient_extension_triangle f a end definition ab_group_quotient_homomorphism (A B : AbGroup)(K : subgroup_rel A)(L : subgroup_rel B) (f : A →g B) (p : Π(a:A), K(a) → L(f a)) : quotient_ab_group K →g quotient_ab_group L := begin fapply quotient_group_elim, exact (ab_qg_map L) ∘g f, intro a, intro k, exact @ab_qg_map_eq_one B L (f a) (p a k), end definition ab_group_kernel_factor {A B C: AbGroup} (f : A →g B)(g : A →g C){i : C →g B}(H : f = i ∘g g ) : Π a:A , kernel_subgroup(g)(a) → kernel_subgroup(f)(a) := begin intro a, intro p, exact calc f a = i (g a) : homotopy_of_eq (ap group_fun H) a ... = i 1 : ap i p ... = 1 : respect_one i end definition ab_group_triv_kernel_factor {A B C: AbGroup} (f : A →g B)(g : A →g C){i : C →g B}(H : f = i ∘g g ) : is_trivial_subgroup _ (kernel_subgroup(f)) → is_trivial_subgroup _ (kernel_subgroup(g)) := begin intro p, intro a, intro q, fapply p, exact ab_group_kernel_factor f g H a q end definition triv_kern_is_embedding {A B : AbGroup} (f : A →g B): is_trivial_subgroup _ (kernel_subgroup(f)) → is_embedding(f) := begin intro p, fapply is_embedding_homomorphism, intro a q, apply p, exact q end definition ab_group_kernel_equivalent {A B : AbGroup} (C : AbGroup) (f : A →g B)(g : A →g C)(i : C →g B)(H : f = i ∘g g )(K : is_embedding i) : Π a:A , kernel_subgroup(g)(a) ↔ kernel_subgroup(f)(a) := begin intro a, fapply iff.intro, exact ab_group_kernel_factor f g H a, intro p, apply @is_injective_of_is_embedding _ _ i _ (g a) 1, exact calc i (g a) = f a : (homotopy_of_eq (ap group_fun H) a)⁻¹ ... = 1 : p ... = i 1 : (respect_one i)⁻¹ end definition ab_group_kernel_image_lift (A B : AbGroup) (f : A →g B) : Π a : A, kernel_subgroup(image_lift(f))(a) ↔ kernel_subgroup(f)(a) := begin fapply ab_group_kernel_equivalent (ab_image f) (f) (image_lift(f)) (image_incl(f)), exact image_factor f, exact is_embedding_of_is_injective (image_incl_injective(f)), end definition ab_group_kernel_quotient_to_image {A B : AbGroup} (f : A →g B) : quotient_ab_group (kernel_subgroup f) →g ab_image (f) := begin fapply quotient_group_elim (image_lift f), intro a, intro p, apply iff.mpr (ab_group_kernel_image_lift _ _ f a) p end definition ab_group_kernel_quotient_to_image_triangle {A B : AbGroup} (f : A →g B) : image_incl f ∘g ab_group_kernel_quotient_to_image f ~ kernel_quotient_extension f := begin intro x, induction x, reflexivity, fapply is_prop.elimo end definition is_surjective_kernel_quotient_to_image {A B : AbGroup} (f : A →g B) : is_surjective (ab_group_kernel_quotient_to_image f) := begin fapply @is_surjective_factor A _ (image f) _ _ _ (group_fun (ab_qg_map (kernel_subgroup f))), exact image_lift f, apply quotient_group_compute, exact is_surjective_image_lift f end definition is_embedding_kernel_quotient_to_image {A B : AbGroup} (f : A →g B) : is_embedding (ab_group_kernel_quotient_to_image f) := begin fapply @is_embedding_factor _ (image f) B _ _ _ (ab_group_kernel_quotient_to_image f) (image_incl f) (kernel_quotient_extension f), exact ab_group_kernel_quotient_to_image_triangle f, exact is_embedding_kernel_quotient_extension f end definition ab_group_first_iso_thm (A B : AbGroup) (f : A →g B) : quotient_ab_group (kernel_subgroup f) ≃g ab_image f := begin fapply isomorphism.mk, exact ab_group_kernel_quotient_to_image f, fapply is_equiv_of_is_surjective_of_is_embedding, exact is_embedding_kernel_quotient_to_image f, exact is_surjective_kernel_quotient_to_image f end -- print iff.mpr /- set generating normal subgroup -/ section parameters {A₁ : AbGroup} (S : A₁ → Prop) variable {A₂ : AbGroup} inductive generating_relation' : A₁ → Type := | rincl : Π{g}, S g → generating_relation' g | rmul : Π{g h}, generating_relation' g → generating_relation' h → generating_relation' (g * h) | rinv : Π{g}, generating_relation' g → generating_relation' g⁻¹ | rone : generating_relation' 1 open generating_relation' definition generating_relation (g : A₁) : Prop := ∥ generating_relation' g ∥ local abbreviation R := generating_relation definition gr_one : R 1 := tr (rone S) definition gr_inv (g : A₁) : R g → R g⁻¹ := trunc_functor -1 rinv definition gr_mul (g h : A₁) : R g → R h → R (g * h) := trunc_functor2 rmul definition normal_generating_relation : subgroup_rel A₁ := ⦃ subgroup_rel, R := R, Rone := gr_one, Rinv := gr_inv, Rmul := gr_mul⦄ parameter (A₁) definition quotient_ab_group_gen : AbGroup := quotient_ab_group normal_generating_relation definition gqg_map [constructor] : A₁ →g quotient_ab_group_gen := qg_map _ parameter {A₁} definition gqg_eq_of_rel {g h : A₁} (H : S (g * h⁻¹)) : gqg_map g = gqg_map h := eq_of_rel (tr (rincl H)) definition gqg_elim [constructor] (f : A₁ →g A₂) (H : Π⦃g⦄, S g → f g = 1) : quotient_ab_group_gen →g A₂ := begin apply quotient_group_elim f, intro g r, induction r with r, induction r with g s g h r r' IH1 IH2 g r IH, { exact H s }, { exact !respect_mul ⬝ ap011 mul IH1 IH2 ⬝ !one_mul }, { exact !respect_inv ⬝ ap inv IH ⬝ !one_inv }, { apply respect_one } end definition gqg_elim_compute (f : A₁ →g A₂) (H : Π⦃g⦄, S g → f g = 1) : gqg_elim f H ∘g gqg_map ~ f := begin intro g, reflexivity end definition gqg_elim_unique (f : A₁ →g A₂) (H : Π⦃g⦄, S g → f g = 1) (k : quotient_ab_group_gen →g A₂) : ( k ∘g gqg_map ~ f ) → k ~ gqg_elim f H := !gelim_unique end end group