-- definitions, theorems and attributes which should be moved to files in the HoTT library import homotopy.sphere2 homotopy.cofiber homotopy.wedge hit.prop_trunc hit.set_quotient eq2 types.pointed2 open eq nat int susp pointed pmap sigma is_equiv equiv fiber algebra trunc pi group is_trunc function unit prod bool attribute pType.sigma_char sigma_pi_equiv_pi_sigma sigma.coind_unc [constructor] attribute ap1_gen [unfold 8 9 10] attribute ap010 [unfold 7] -- TODO: homotopy_of_eq and apd10 should be the same -- TODO: there is also apd10_eq_of_homotopy in both pi and eq(?) namespace eq definition apd10_prepostcompose_nondep {A B C D : Type} (h : C → D) {g g' : B → C} (p : g = g') (f : A → B) (a : A) : apd10 (ap (λg a, h (g (f a))) p) a = ap h (apd10 p (f a)) := begin induction p, reflexivity end definition apd10_prepostcompose {A B : Type} {C : B → Type} {D : A → Type} (f : A → B) (h : Πa, C (f a) → D a) {g g' : Πb, C b} (p : g = g') (a : A) : apd10 (ap (λg a, h a (g (f a))) p) a = ap (h a) (apd10 p (f a)) := begin induction p, reflexivity end definition eq.rec_to {A : Type} {a₀ : A} {P : Π⦃a₁⦄, a₀ = a₁ → Type} {a₁ : A} (p₀ : a₀ = a₁) (H : P p₀) ⦃a₂ : A⦄ (p : a₀ = a₂) : P p := begin induction p₀, induction p, exact H end definition eq.rec_to2 {A : Type} {P : Π⦃a₀ a₁⦄, a₀ = a₁ → Type} {a₀ a₀' a₁' : A} (p' : a₀' = a₁') (p₀ : a₀ = a₀') (H : P p') ⦃a₁ : A⦄ (p : a₀ = a₁) : P p := begin induction p₀, induction p', induction p, exact H end definition eq.rec_right_inv {A : Type} (f : A ≃ A) {P : Π⦃a₀ a₁⦄, f a₀ = a₁ → Type} (H : Πa, P (right_inv f a)) ⦃a₀ a₁ : A⦄ (p : f a₀ = a₁) : P p := begin revert a₀ p, refine equiv_rect f⁻¹ᵉ _ _, intro a₀ p, exact eq.rec_to (right_inv f a₀) (H a₀) p, end definition eq.rec_equiv {A B : Type} {a₀ : A} (f : A ≃ B) {P : Π{a₁}, f a₀ = f a₁ → Type} (H : P (idpath (f a₀))) ⦃a₁ : A⦄ (p : f a₀ = f a₁) : P p := begin assert qr : Σ(q : a₀ = a₁), ap f q = p, { exact ⟨eq_of_fn_eq_fn f p, ap_eq_of_fn_eq_fn' f p⟩ }, cases qr with q r, apply transport P r, induction q, exact H end definition eq.rec_equiv_symm {A B : Type} {a₁ : A} (f : A ≃ B) {P : Π{a₀}, f a₀ = f a₁ → Type} (H : P (idpath (f a₁))) ⦃a₀ : A⦄ (p : f a₀ = f a₁) : P p := begin assert qr : Σ(q : a₀ = a₁), ap f q = p, { exact ⟨eq_of_fn_eq_fn f p, ap_eq_of_fn_eq_fn' f p⟩ }, cases qr with q r, apply transport P r, induction q, exact H end definition eq.rec_equiv_to_same {A B : Type} {a₀ : A} (f : A ≃ B) {P : Π{a₁}, f a₀ = f a₁ → Type} ⦃a₁' : A⦄ (p' : f a₀ = f a₁') (H : P p') ⦃a₁ : A⦄ (p : f a₀ = f a₁) : P p := begin revert a₁' p' H a₁ p, refine eq.rec_equiv f _, exact eq.rec_equiv f end definition eq.rec_equiv_to {A A' B : Type} {a₀ : A} (f : A ≃ B) (g : A' ≃ B) {P : Π{a₁}, f a₀ = g a₁ → Type} ⦃a₁' : A'⦄ (p' : f a₀ = g a₁') (H : P p') ⦃a₁ : A'⦄ (p : f a₀ = g a₁) : P p := begin assert qr : Σ(q : g⁻¹ (f a₀) = a₁), (right_inv g (f a₀))⁻¹ ⬝ ap g q = p, { exact ⟨eq_of_fn_eq_fn g (right_inv g (f a₀) ⬝ p), whisker_left _ (ap_eq_of_fn_eq_fn' g _) ⬝ !inv_con_cancel_left⟩ }, assert q'r' : Σ(q' : g⁻¹ (f a₀) = a₁'), (right_inv g (f a₀))⁻¹ ⬝ ap g q' = p', { exact ⟨eq_of_fn_eq_fn g (right_inv g (f a₀) ⬝ p'), whisker_left _ (ap_eq_of_fn_eq_fn' g _) ⬝ !inv_con_cancel_left⟩ }, induction qr with q r, induction q'r' with q' r', induction q, induction q', induction r, induction r', exact H end definition eq.rec_grading {A A' B : Type} {a : A} (f : A ≃ B) (g : A' ≃ B) {P : Π{b}, f a = b → Type} {a' : A'} (p' : f a = g a') (H : P p') ⦃b : B⦄ (p : f a = b) : P p := begin revert b p, refine equiv_rect g _ _, exact eq.rec_equiv_to f g p' H end definition eq.rec_grading_unbased {A B B' C : Type} (f : A ≃ B) (g : B ≃ C) (h : B' ≃ C) {P : Π{b c}, g b = c → Type} {a' : A} {b' : B'} (p' : g (f a') = h b') (H : P p') ⦃b : B⦄ ⦃c : C⦄ (q : f a' = b) (p : g b = c) : P p := begin induction q, exact eq.rec_grading (f ⬝e g) h p' H p end -- definition homotopy_group_homomorphism_pinv (n : ℕ) {A B : Type*} (f : A ≃* B) : -- π→g[n+1] f⁻¹ᵉ* ~ (homotopy_group_isomorphism_of_pequiv n f)⁻¹ᵍ := -- begin -- -- refine ptrunc_functor_phomotopy 0 !apn_pinv ⬝hty _, -- -- intro x, esimp, -- end -- definition natural_square_tr_eq {A B : Type} {a a' : A} {f g : A → B} -- (p : f ~ g) (q : a = a') : natural_square p q = square_of_pathover (apd p q) := -- idp lemma homotopy_group_isomorphism_of_ptrunc_pequiv {A B : Type*} (n k : ℕ) (H : n+1 ≤[ℕ] k) (f : ptrunc k A ≃* ptrunc k B) : πg[n+1] A ≃g πg[n+1] B := (ghomotopy_group_ptrunc_of_le H A)⁻¹ᵍ ⬝g homotopy_group_isomorphism_of_pequiv n f ⬝g ghomotopy_group_ptrunc_of_le H B section hsquare variables {A₀₀ A₂₀ A₄₀ A₀₂ A₂₂ A₄₂ A₀₄ A₂₄ A₄₄ : Type} {f₁₀ : A₀₀ → A₂₀} {f₃₀ : A₂₀ → A₄₀} {f₀₁ : A₀₀ → A₀₂} {f₂₁ : A₂₀ → A₂₂} {f₄₁ : A₄₀ → A₄₂} {f₁₂ : A₀₂ → A₂₂} {f₃₂ : A₂₂ → A₄₂} {f₀₃ : A₀₂ → A₀₄} {f₂₃ : A₂₂ → A₂₄} {f₄₃ : A₄₂ → A₄₄} {f₁₄ : A₀₄ → A₂₄} {f₃₄ : A₂₄ → A₄₄} definition trunc_functor_hsquare (n : ℕ₋₂) (h : hsquare f₁₀ f₁₂ f₀₁ f₂₁) : hsquare (trunc_functor n f₁₀) (trunc_functor n f₁₂) (trunc_functor n f₀₁) (trunc_functor n f₂₁) := λa, !trunc_functor_compose⁻¹ ⬝ trunc_functor_homotopy n h a ⬝ !trunc_functor_compose end hsquare definition homotopy_group_succ_in_natural (n : ℕ) {A B : Type*} (f : A →* B) : hsquare (homotopy_group_succ_in A n) (homotopy_group_succ_in B n) (π→[n+1] f) (π→[n] (Ω→ f)) := trunc_functor_hsquare _ (loopn_succ_in_natural n f)⁻¹* definition homotopy2.refl {A} {B : A → Type} {C : Π⦃a⦄, B a → Type} (f : Πa (b : B a), C b) : f ~2 f := λa b, idp definition homotopy2.rfl [refl] {A} {B : A → Type} {C : Π⦃a⦄, B a → Type} {f : Πa (b : B a), C b} : f ~2 f := λa b, idp definition homotopy3.refl {A} {B : A → Type} {C : Πa, B a → Type} {D : Π⦃a⦄ ⦃b : B a⦄, C a b → Type} (f : Πa b (c : C a b), D c) : f ~3 f := λa b c, idp definition homotopy3.rfl {A} {B : A → Type} {C : Πa, B a → Type} {D : Π⦃a⦄ ⦃b : B a⦄, C a b → Type} {f : Πa b (c : C a b), D c} : f ~3 f := λa b c, idp definition homotopy.rec_idp [recursor] {A : Type} {P : A → Type} {f : Πa, P a} (Q : Π{g}, (f ~ g) → Type) (H : Q (homotopy.refl f)) {g : Π x, P x} (p : f ~ g) : Q p := homotopy.rec_on_idp p H open funext definition homotopy_rec_on_apd10 {A : Type} {P : A → Type} {f g : Πa, P a} (Q : f ~ g → Type) (H : Π(q : f = g), Q (apd10 q)) (p : f = g) : homotopy.rec_on (apd10 p) H = H p := begin unfold [homotopy.rec_on], refine ap (λp, p ▸ _) !adj ⬝ _, refine !tr_compose⁻¹ ⬝ _, apply apdt end definition homotopy_rec_idp_refl {A : Type} {P : A → Type} {f : Πa, P a} (Q : Π{g}, f ~ g → Type) (H : Q homotopy.rfl) : homotopy.rec_idp @Q H homotopy.rfl = H := !homotopy_rec_on_apd10 definition phomotopy_rec_on_idp_refl {A B : Type*} (f : A →* B) {Q : Π{g}, (f ~* g) → Type} (H : Q (phomotopy.refl f)) : phomotopy_rec_on_idp phomotopy.rfl H = H := !phomotopy_rec_on_eq_phomotopy_of_eq end eq open eq namespace nat protected definition rec_down (P : ℕ → Type) (s : ℕ) (H0 : P s) (Hs : Πn, P (n+1) → P n) : P 0 := have Hp : Πn, P n → P (pred n), begin intro n p, cases n with n, { exact p }, { exact Hs n p } end, have H : Πn, P (s - n), begin intro n, induction n with n p, { exact H0 }, { exact Hp (s - n) p } end, transport P (nat.sub_self s) (H s) end nat namespace trunc_index open is_conn nat trunc is_trunc lemma minus_two_add_plus_two (n : ℕ₋₂) : -2+2+n = n := by induction n with n p; reflexivity; exact ap succ p protected definition of_nat_monotone {n k : ℕ} : n ≤ k → of_nat n ≤ of_nat k := begin intro H, induction H with k H K, { apply le.tr_refl }, { apply le.step K } end lemma add_plus_two_comm (n k : ℕ₋₂) : n +2+ k = k +2+ n := begin induction n with n IH, { exact minus_two_add_plus_two k }, { exact !succ_add_plus_two ⬝ ap succ IH} end end trunc_index namespace int private definition maxm2_le.lemma₁ {n k : ℕ} : n+(1:int) + -[1+ k] ≤ n := le.intro ( calc n + 1 + -[1+ k] + k = n + 1 + (-(k + 1)) + k : by reflexivity ... = n + 1 + (- 1 - k) + k : by krewrite (neg_add_rev k 1) ... = n + 1 + (- 1 - k + k) : add.assoc ... = n + 1 + (- 1 + -k + k) : by reflexivity ... = n + 1 + (- 1 + (-k + k)) : add.assoc ... = n + 1 + (- 1 + 0) : add.left_inv ... = n + (1 + (- 1 + 0)) : add.assoc ... = n : int.add_zero) private definition maxm2_le.lemma₂ {n : ℕ} {k : ℤ} : -[1+ n] + 1 + k ≤ k := le.intro ( calc -[1+ n] + 1 + k + n = - (n + 1) + 1 + k + n : by reflexivity ... = -n - 1 + 1 + k + n : by rewrite (neg_add n 1) ... = -n + (- 1 + 1) + k + n : by krewrite (int.add_assoc (-n) (- 1) 1) ... = -n + 0 + k + n : add.left_inv 1 ... = -n + k + n : int.add_zero ... = k + -n + n : int.add_comm ... = k + (-n + n) : int.add_assoc ... = k + 0 : add.left_inv n ... = k : int.add_zero) open trunc_index /- The function from integers to truncation indices which sends positive numbers to themselves, and negative numbers to negative 2. In particular -1 is sent to -2, but since we only work with pointed types, that doesn't matter for us -/ definition maxm2 [unfold 1] : ℤ → ℕ₋₂ := λ n, int.cases_on n trunc_index.of_nat (λk, -2) -- we also need the max -1 - function definition maxm1 [unfold 1] : ℤ → ℕ₋₂ := λ n, int.cases_on n trunc_index.of_nat (λk, -1) definition maxm2_le_maxm1 (n : ℤ) : maxm2 n ≤ maxm1 n := begin induction n with n n, { exact le.tr_refl n }, { exact minus_two_le -1 } end -- the is maxm1 minus 1 definition maxm1m1 [unfold 1] : ℤ → ℕ₋₂ := λ n, int.cases_on n (λ k, k.-1) (λ k, -2) definition maxm1_eq_succ (n : ℤ) : maxm1 n = (maxm1m1 n).+1 := begin induction n with n n, { reflexivity }, { reflexivity } end definition maxm2_le_maxm0 (n : ℤ) : maxm2 n ≤ max0 n := begin induction n with n n, { exact le.tr_refl n }, { exact minus_two_le 0 } end definition max0_le_of_le {n : ℤ} {m : ℕ} (H : n ≤ of_nat m) : nat.le (max0 n) m := begin induction n with n n, { exact le_of_of_nat_le_of_nat H }, { exact nat.zero_le m } end definition not_neg_succ_le_of_nat {n m : ℕ} : ¬m ≤ -[1+n] := by cases m: exact id definition maxm2_monotone {n m : ℤ} (H : n ≤ m) : maxm2 n ≤ maxm2 m := begin induction n with n n, { induction m with m m, { apply of_nat_le_of_nat, exact le_of_of_nat_le_of_nat H }, { exfalso, exact not_neg_succ_le_of_nat H }}, { apply minus_two_le } end definition sub_nat_le (n : ℤ) (m : ℕ) : n - m ≤ n := le.intro !sub_add_cancel definition sub_one_le (n : ℤ) : n - 1 ≤ n := sub_nat_le n 1 definition le_add_nat (n : ℤ) (m : ℕ) : n ≤ n + m := le.intro rfl definition le_add_one (n : ℤ) : n ≤ n + 1:= le_add_nat n 1 open trunc_index definition maxm2_le (n k : ℤ) : maxm2 (n+1+k) ≤ (maxm1m1 n).+1+2+(maxm1m1 k) := begin rewrite [-(maxm1_eq_succ n)], induction n with n n, { induction k with k k, { induction k with k IH, { apply le.tr_refl }, { exact succ_le_succ IH } }, { exact trunc_index.le_trans (maxm2_monotone maxm2_le.lemma₁) (maxm2_le_maxm1 n) } }, { krewrite (add_plus_two_comm -1 (maxm1m1 k)), rewrite [-(maxm1_eq_succ k)], exact trunc_index.le_trans (maxm2_monotone maxm2_le.lemma₂) (maxm2_le_maxm1 k) } end end int open int namespace pmap definition eta {A B : Type*} (f : A →* B) : pmap.mk f (respect_pt f) = f := begin induction f, reflexivity end end pmap namespace lift definition is_trunc_plift [instance] [priority 1450] (A : Type*) (n : ℕ₋₂) [H : is_trunc n A] : is_trunc n (plift A) := is_trunc_lift A n end lift namespace trunc open trunc_index definition trunc_index_equiv_nat [constructor] : ℕ₋₂ ≃ ℕ := equiv.MK add_two sub_two add_two_sub_two sub_two_add_two definition is_set_trunc_index [instance] : is_set ℕ₋₂ := is_trunc_equiv_closed_rev 0 trunc_index_equiv_nat definition is_contr_ptrunc_minus_one (A : Type*) : is_contr (ptrunc -1 A) := is_contr_of_inhabited_prop pt -- TODO: redefine loopn_ptrunc_pequiv definition apn_ptrunc_functor (n : ℕ₋₂) (k : ℕ) {A B : Type*} (f : A →* B) : Ω→[k] (ptrunc_functor (n+k) f) ∘* (loopn_ptrunc_pequiv n k A)⁻¹ᵉ* ~* (loopn_ptrunc_pequiv n k B)⁻¹ᵉ* ∘* ptrunc_functor n (Ω→[k] f) := begin revert n, induction k with k IH: intro n, { reflexivity }, { exact sorry } end definition ptrunc_pequiv_natural [constructor] (n : ℕ₋₂) {A B : Type*} (f : A →* B) [is_trunc n A] [is_trunc n B] : f ∘* ptrunc_pequiv n A ~* ptrunc_pequiv n B ∘* ptrunc_functor n f := begin fapply phomotopy.mk, { intro a, induction a with a, reflexivity }, { refine !idp_con ⬝ _ ⬝ !idp_con⁻¹, refine !ap_compose'⁻¹ ⬝ _, apply ap_id } end definition ptr_natural [constructor] (n : ℕ₋₂) {A B : Type*} (f : A →* B) : ptrunc_functor n f ∘* ptr n A ~* ptr n B ∘* f := begin fapply phomotopy.mk, { intro a, reflexivity }, { reflexivity } end definition ptrunc_elim_pcompose (n : ℕ₋₂) {A B C : Type*} (g : B →* C) (f : A →* B) [is_trunc n B] [is_trunc n C] : ptrunc.elim n (g ∘* f) ~* g ∘* ptrunc.elim n f := begin fapply phomotopy.mk, { intro a, induction a with a, reflexivity }, { apply idp_con } end definition ptrunc_elim_ptr_phomotopy_pid (n : ℕ₋₂) (A : Type*): ptrunc.elim n (ptr n A) ~* pid (ptrunc n A) := begin fapply phomotopy.mk, { intro a, induction a with a, reflexivity }, { apply idp_con } end definition is_trunc_ptrunc_of_is_trunc [instance] [priority 500] (A : Type*) (n m : ℕ₋₂) [H : is_trunc n A] : is_trunc n (ptrunc m A) := is_trunc_trunc_of_is_trunc A n m definition ptrunc_pequiv_ptrunc_of_is_trunc {n m k : ℕ₋₂} {A : Type*} (H1 : n ≤ m) (H2 : n ≤ k) (H : is_trunc n A) : ptrunc m A ≃* ptrunc k A := have is_trunc m A, from is_trunc_of_le A H1, have is_trunc k A, from is_trunc_of_le A H2, pequiv.MK (ptrunc.elim _ (ptr k A)) (ptrunc.elim _ (ptr m A)) abstract begin refine !ptrunc_elim_pcompose⁻¹* ⬝* _, exact ptrunc_elim_phomotopy _ !ptrunc_elim_ptr ⬝* !ptrunc_elim_ptr_phomotopy_pid, end end abstract begin refine !ptrunc_elim_pcompose⁻¹* ⬝* _, exact ptrunc_elim_phomotopy _ !ptrunc_elim_ptr ⬝* !ptrunc_elim_ptr_phomotopy_pid, end end definition ptrunc_change_index {k l : ℕ₋₂} (p : k = l) (X : Type*) : ptrunc k X ≃* ptrunc l X := pequiv_ap (λ n, ptrunc n X) p definition ptrunc_functor_le {k l : ℕ₋₂} (p : l ≤ k) (X : Type*) : ptrunc k X →* ptrunc l X := have is_trunc k (ptrunc l X), from is_trunc_of_le _ p, ptrunc.elim _ (ptr l X) definition trunc_index.pred [unfold 1] (n : ℕ₋₂) : ℕ₋₂ := begin cases n with n, exact -2, exact n end /- A more general version of ptrunc_elim_phomotopy, where the proofs of truncatedness might be different -/ definition ptrunc_elim_phomotopy2 [constructor] (k : ℕ₋₂) {A B : Type*} {f g : A →* B} (H₁ : is_trunc k B) (H₂ : is_trunc k B) (p : f ~* g) : @ptrunc.elim k A B H₁ f ~* @ptrunc.elim k A B H₂ g := begin fapply phomotopy.mk, { intro x, induction x with a, exact p a }, { exact to_homotopy_pt p } end end trunc namespace is_trunc open trunc_index is_conn definition is_trunc_of_eq {n m : ℕ₋₂} (p : n = m) {A : Type} (H : is_trunc n A) : is_trunc m A := transport (λk, is_trunc k A) p H definition is_trunc_succ_succ_of_is_trunc_loop (n : ℕ₋₂) (A : Type*) (H : is_trunc (n.+1) (Ω A)) (H2 : is_conn 0 A) : is_trunc (n.+2) A := begin apply is_trunc_succ_of_is_trunc_loop, apply minus_one_le_succ, refine is_conn.elim -1 _ _, exact H end lemma is_trunc_of_is_trunc_loopn (m n : ℕ) (A : Type*) (H : is_trunc n (Ω[m] A)) (H2 : is_conn m A) : is_trunc (m + n) A := begin revert A H H2; induction m with m IH: intro A H H2, { rewrite [nat.zero_add], exact H }, rewrite [succ_add], apply is_trunc_succ_succ_of_is_trunc_loop, { apply IH, { apply is_trunc_equiv_closed _ !loopn_succ_in }, apply is_conn_loop }, exact is_conn_of_le _ (zero_le_of_nat (succ m)) end lemma is_trunc_of_is_set_loopn (m : ℕ) (A : Type*) (H : is_set (Ω[m] A)) (H2 : is_conn m A) : is_trunc m A := is_trunc_of_is_trunc_loopn m 0 A H H2 end is_trunc namespace sigma definition ap_sigma_pr1 {A B : Type} {C : B → Type} {a₁ a₂ : A} (f : A → B) (g : Πa, C (f a)) (p : a₁ = a₂) : (ap (λa, ⟨f a, g a⟩) p)..1 = ap f p := by induction p; reflexivity definition ap_sigma_pr2 {A B : Type} {C : B → Type} {a₁ a₂ : A} (f : A → B) (g : Πa, C (f a)) (p : a₁ = a₂) : (ap (λa, ⟨f a, g a⟩) p)..2 = change_path (ap_sigma_pr1 f g p)⁻¹ (pathover_ap C f (apd g p)) := by induction p; reflexivity -- open sigma.ops -- definition eq.rec_sigma {A : Type} {B : A → Type} {a₀ : A} {b₀ : B a₀} -- {P : Π(a : A) (b : B a), ⟨a₀, b₀⟩ = ⟨a, b⟩ → Type} (H : P a₀ b₀ idp) {a : A} {b : B a} -- (p : ⟨a₀, b₀⟩ = ⟨a, b⟩) : P a b p := -- sorry -- definition sigma_pathover_equiv_of_is_prop {A : Type} {B : A → Type} {C : Πa, B a → Type} -- {a a' : A} {p : a = a'} {b : B a} {b' : B a'} {c : C a b} {c' : C a' b'} -- [Πa b, is_prop (C a b)] : ⟨b, c⟩ =[p] ⟨b', c'⟩ ≃ b =[p] b' := -- begin -- fapply equiv.MK, -- { exact pathover_pr1 }, -- { intro q, induction q, apply pathover_idp_of_eq, exact sigma_eq idp !is_prop.elimo }, -- { intro q, induction q, -- have c = c', from !is_prop.elim, induction this, -- rewrite [▸*, is_prop_elimo_self (C a) c] }, -- { esimp, generalize ⟨b, c⟩, intro x q, } -- end --rexact @(ap pathover_pr1) _ idpo _, end sigma open sigma namespace group -- definition is_equiv_isomorphism -- some extra instances for type class inference -- definition is_mul_hom_comm_homomorphism [instance] {G G' : AbGroup} (φ : G →g G') -- : @is_mul_hom G G' (@ab_group.to_group _ (AbGroup.struct G)) -- (@ab_group.to_group _ (AbGroup.struct G')) φ := -- homomorphism.struct φ -- definition is_mul_hom_comm_homomorphism1 [instance] {G G' : AbGroup} (φ : G →g G') -- : @is_mul_hom G G' _ -- (@ab_group.to_group _ (AbGroup.struct G')) φ := -- homomorphism.struct φ -- definition is_mul_hom_comm_homomorphism2 [instance] {G G' : AbGroup} (φ : G →g G') -- : @is_mul_hom G G' (@ab_group.to_group _ (AbGroup.struct G)) _ φ := -- homomorphism.struct φ definition pgroup_of_Group (X : Group) : pgroup X := pgroup_of_group _ idp definition isomorphism_ap {A : Type} (F : A → Group) {a b : A} (p : a = b) : F a ≃g F b := isomorphism_of_eq (ap F p) definition interchange (G : AbGroup) (a b c d : G) : (a * b) * (c * d) = (a * c) * (b * d) := calc (a * b) * (c * d) = a * (b * (c * d)) : by exact mul.assoc a b (c * d) ... = a * ((b * c) * d) : by exact ap (λ bcd, a * bcd) (mul.assoc b c d)⁻¹ ... = a * ((c * b) * d) : by exact ap (λ bc, a * (bc * d)) (mul.comm b c) ... = a * (c * (b * d)) : by exact ap (λ bcd, a * bcd) (mul.assoc c b d) ... = (a * c) * (b * d) : by exact (mul.assoc a c (b * d))⁻¹ definition homomorphism_comp_compute {G H K : Group} (g : H →g K) (f : G →g H) (x : G) : (g ∘g f) x = g (f x) := begin reflexivity end open option definition add_point_AbGroup [unfold 3] {X : Type} (G : X → AbGroup) : X₊ → AbGroup | (some x) := G x | none := trivial_ab_group_lift definition isomorphism_of_is_contr {G H : Group} (hG : is_contr G) (hH : is_contr H) : G ≃g H := trivial_group_of_is_contr G ⬝g (trivial_group_of_is_contr H)⁻¹ᵍ definition trunc_isomorphism_of_equiv {A B : Type} [inf_group A] [inf_group B] (f : A ≃ B) (h : is_mul_hom f) : Group.mk (trunc 0 A) (trunc_group A) ≃g Group.mk (trunc 0 B) (trunc_group B) := begin apply isomorphism_of_equiv (equiv.mk (trunc_functor 0 f) (is_equiv_trunc_functor 0 f)), intros x x', induction x with a, induction x' with a', apply ap tr, exact h a a' end end group open group namespace fiber definition is_contr_pfiber_pid (A : Type*) : is_contr (pfiber (pid A)) := is_contr.mk pt begin intro x, induction x with a p, esimp at p, cases p, reflexivity end end fiber namespace function variables {A B : Type} {f f' : A → B} open is_conn sigma.ops definition merely_constant {A B : Type} (f : A → B) : Type := Σb, Πa, merely (f a = b) definition merely_constant_pmap {A B : Type*} {f : A →* B} (H : merely_constant f) (a : A) : merely (f a = pt) := tconcat (tconcat (H.2 a) (tinverse (H.2 pt))) (tr (respect_pt f)) definition merely_constant_of_is_conn {A B : Type*} (f : A →* B) [is_conn 0 A] : merely_constant f := ⟨pt, is_conn.elim -1 _ (tr (respect_pt f))⟩ definition homotopy_group_isomorphism_of_is_embedding (n : ℕ) [H : is_succ n] {A B : Type*} (f : A →* B) [H2 : is_embedding f] : πg[n] A ≃g πg[n] B := begin apply isomorphism.mk (homotopy_group_homomorphism n f), induction H with n, apply is_equiv_of_equiv_of_homotopy (ptrunc_pequiv_ptrunc 0 (loopn_pequiv_loopn_of_is_embedding (n+1) f)), exact sorry end end function open function namespace is_conn open unit trunc_index nat is_trunc pointed.ops definition is_conn_fun_compose {n : ℕ₋₂} {A B C : Type} (g : B → C) (f : A → B) (H : is_conn_fun n g) (K : is_conn_fun n f) : is_conn_fun n (g ∘ f) := sorry end is_conn namespace misc open is_conn open sigma.ops pointed trunc_index definition component [constructor] (A : Type*) : Type* := pType.mk (Σ(a : A), merely (pt = a)) ⟨pt, tr idp⟩ lemma is_conn_component [instance] (A : Type*) : is_conn 0 (component A) := is_contr.mk (tr pt) begin intro x, induction x with x, induction x with a p, induction p with p, induction p, reflexivity end definition component_incl [constructor] (A : Type*) : component A →* A := pmap.mk pr1 idp definition is_embedding_component_incl [instance] (A : Type*) : is_embedding (component_incl A) := is_embedding_pr1 _ definition component_intro [constructor] {A B : Type*} (f : A →* B) (H : merely_constant f) : A →* component B := begin fapply pmap.mk, { intro a, refine ⟨f a, _⟩, exact tinverse (merely_constant_pmap H a) }, exact subtype_eq !respect_pt end definition component_functor [constructor] {A B : Type*} (f : A →* B) : component A →* component B := component_intro (f ∘* component_incl A) !merely_constant_of_is_conn -- definition component_elim [constructor] {A B : Type*} (f : A →* B) (H : merely_constant f) : -- A →* component B := -- begin -- fapply pmap.mk, -- { intro a, refine ⟨f a, _⟩, exact tinverse (merely_constant_pmap H a) }, -- exact subtype_eq !respect_pt -- end definition loop_component (A : Type*) : Ω (component A) ≃* Ω A := loop_pequiv_loop_of_is_embedding (component_incl A) lemma loopn_component (n : ℕ) (A : Type*) : Ω[n+1] (component A) ≃* Ω[n+1] A := !loopn_succ_in ⬝e* loopn_pequiv_loopn n (loop_component A) ⬝e* !loopn_succ_in⁻¹ᵉ* -- lemma fundamental_group_component (A : Type*) : π₁ (component A) ≃g π₁ A := -- isomorphism_of_equiv (trunc_equiv_trunc 0 (loop_component A)) _ lemma homotopy_group_component (n : ℕ) (A : Type*) : πg[n+1] (component A) ≃g πg[n+1] A := homotopy_group_isomorphism_of_is_embedding (n+1) (component_incl A) definition is_trunc_component [instance] (n : ℕ₋₂) (A : Type*) [is_trunc n A] : is_trunc n (component A) := begin apply @is_trunc_sigma, intro a, cases n with n, { apply is_contr_of_inhabited_prop, exact tr !is_prop.elim }, { apply is_trunc_succ_of_is_prop }, end definition ptrunc_component' (n : ℕ₋₂) (A : Type*) : ptrunc (n.+2) (component A) ≃* component (ptrunc (n.+2) A) := begin fapply pequiv.MK', { exact ptrunc.elim (n.+2) (component_functor !ptr) }, { intro x, cases x with x p, induction x with a, refine tr ⟨a, _⟩, note q := trunc_functor -1 !tr_eq_tr_equiv p, exact trunc_trunc_equiv_left _ !minus_one_le_succ q }, { exact sorry }, { exact sorry } end definition ptrunc_component (n : ℕ₋₂) (A : Type*) : ptrunc n (component A) ≃* component (ptrunc n A) := begin cases n with n, exact sorry, cases n with n, exact sorry, exact ptrunc_component' n A end definition pfiber_pequiv_component_of_is_contr [constructor] {A B : Type*} (f : A →* B) [is_contr B] /- extra condition, something like trunc_functor 0 f is an embedding -/ : pfiber f ≃* component A := sorry end misc namespace category definition precategory_Group.{u} [instance] [constructor] : precategory.{u+1 u} Group := begin fapply precategory.mk, { exact λG H, G →g H }, { exact _ }, { exact λG H K ψ φ, ψ ∘g φ }, { exact λG, gid G }, { intros, apply homomorphism_eq, esimp }, { intros, apply homomorphism_eq, esimp }, { intros, apply homomorphism_eq, esimp } end definition precategory_AbGroup.{u} [instance] [constructor] : precategory.{u+1 u} AbGroup := begin fapply precategory.mk, { exact λG H, G →g H }, { exact _ }, { exact λG H K ψ φ, ψ ∘g φ }, { exact λG, gid G }, { intros, apply homomorphism_eq, esimp }, { intros, apply homomorphism_eq, esimp }, { intros, apply homomorphism_eq, esimp } end open iso definition Group_is_iso_of_is_equiv {G H : Group} (φ : G →g H) (H : is_equiv (group_fun φ)) : is_iso φ := begin fconstructor, { exact (isomorphism.mk φ H)⁻¹ᵍ }, { apply homomorphism_eq, rexact left_inv φ }, { apply homomorphism_eq, rexact right_inv φ } end definition Group_is_equiv_of_is_iso {G H : Group} (φ : G ⟶ H) (Hφ : is_iso φ) : is_equiv (group_fun φ) := begin fapply adjointify, { exact group_fun φ⁻¹ʰ }, { note p := right_inverse φ, exact ap010 group_fun p }, { note p := left_inverse φ, exact ap010 group_fun p } end definition Group_iso_equiv (G H : Group) : (G ≅ H) ≃ (G ≃g H) := begin fapply equiv.MK, { intro φ, induction φ with φ φi, constructor, exact Group_is_equiv_of_is_iso φ _ }, { intro v, induction v with φ φe, constructor, exact Group_is_iso_of_is_equiv φ _ }, { intro v, induction v with φ φe, apply isomorphism_eq, reflexivity }, { intro φ, induction φ with φ φi, apply iso_eq, reflexivity } end definition Group_props.{u} {A : Type.{u}} (v : (A → A → A) × (A → A) × A) : Prop.{u} := begin induction v with m v, induction v with i o, fapply trunctype.mk, { exact is_set A × (Πa, m a o = a) × (Πa, m o a = a) × (Πa b c, m (m a b) c = m a (m b c)) × (Πa, m (i a) a = o) }, { apply is_trunc_of_imp_is_trunc, intro v, induction v with H v, have is_prop (Πa, m a o = a), from _, have is_prop (Πa, m o a = a), from _, have is_prop (Πa b c, m (m a b) c = m a (m b c)), from _, have is_prop (Πa, m (i a) a = o), from _, apply is_trunc_prod } end definition Group.sigma_char2.{u} : Group.{u} ≃ Σ(A : Type.{u}) (v : (A → A → A) × (A → A) × A), Group_props v := begin fapply equiv.MK, { intro G, refine ⟨G, _⟩, induction G with G g, induction g with m s ma o om mo i mi, repeat (fconstructor; do 2 try assumption), }, { intro v, induction v with x v, induction v with y v, repeat induction y with x y, repeat induction v with x v, constructor, fconstructor, repeat assumption }, { intro v, induction v with x v, induction v with y v, repeat induction y with x y, repeat induction v with x v, reflexivity }, { intro v, repeat induction v with x v, reflexivity }, end open is_trunc section local attribute group.to_has_mul group.to_has_inv [coercion] theorem inv_eq_of_mul_eq {A : Type} (G H : group A) (p : @mul A G ~2 @mul A H) : @inv A G ~ @inv A H := begin have foo : Π(g : A), @inv A G g = (@inv A G g * g) * @inv A H g, from λg, !mul_inv_cancel_right⁻¹, cases G with Gs Gm Gh1 G1 Gh2 Gh3 Gi Gh4, cases H with Hs Hm Hh1 H1 Hh2 Hh3 Hi Hh4, change Gi ~ Hi, intro g, have p' : Gm ~2 Hm, from p, calc Gi g = Hm (Hm (Gi g) g) (Hi g) : foo ... = Hm (Gm (Gi g) g) (Hi g) : by rewrite p' ... = Hm G1 (Hi g) : by rewrite Gh4 ... = Gm G1 (Hi g) : by rewrite p' ... = Hi g : Gh2 end theorem one_eq_of_mul_eq {A : Type} (G H : group A) (p : @mul A (group.to_has_mul G) ~2 @mul A (group.to_has_mul H)) : @one A (group.to_has_one G) = @one A (group.to_has_one H) := begin cases G with Gm Gs Gh1 G1 Gh2 Gh3 Gi Gh4, cases H with Hm Hs Hh1 H1 Hh2 Hh3 Hi Hh4, exact (Hh2 G1)⁻¹ ⬝ (p H1 G1)⁻¹ ⬝ Gh3 H1, end end open prod.ops definition group_of_Group_props.{u} {A : Type.{u}} {m : A → A → A} {i : A → A} {o : A} (H : Group_props (m, (i, o))) : group A := ⦃group, mul := m, inv := i, one := o, is_set_carrier := H.1, mul_one := H.2.1, one_mul := H.2.2.1, mul_assoc := H.2.2.2.1, mul_left_inv := H.2.2.2.2⦄ theorem Group_eq_equiv_lemma2 {A : Type} {m m' : A → A → A} {i i' : A → A} {o o' : A} (H : Group_props (m, (i, o))) (H' : Group_props (m', (i', o'))) : (m, (i, o)) = (m', (i', o')) ≃ (m ~2 m') := begin have is_set A, from pr1 H, apply equiv_of_is_prop, { intro p, exact apd100 (eq_pr1 p)}, { intro p, apply prod_eq (eq_of_homotopy2 p), apply prod_eq: esimp [Group_props] at *; esimp, { apply eq_of_homotopy, exact inv_eq_of_mul_eq (group_of_Group_props H) (group_of_Group_props H') p }, { exact one_eq_of_mul_eq (group_of_Group_props H) (group_of_Group_props H') p }} end open sigma.ops theorem Group_eq_equiv_lemma {G H : Group} (p : (Group.sigma_char2 G).1 = (Group.sigma_char2 H).1) : ((Group.sigma_char2 G).2 =[p] (Group.sigma_char2 H).2) ≃ (is_mul_hom (equiv_of_eq (proof p qed : Group.carrier G = Group.carrier H))) := begin refine !sigma_pathover_equiv_of_is_prop ⬝e _, induction G with G g, induction H with H h, esimp [Group.sigma_char2] at p, induction p, refine !pathover_idp ⬝e _, induction g with s m ma o om mo i mi, induction h with σ μ μa ε εμ με ι μι, exact Group_eq_equiv_lemma2 (Group.sigma_char2 (Group.mk G (group.mk s m ma o om mo i mi))).2.2 (Group.sigma_char2 (Group.mk G (group.mk σ μ μa ε εμ με ι μι))).2.2 end definition isomorphism.sigma_char (G H : Group) : (G ≃g H) ≃ Σ(e : G ≃ H), is_mul_hom e := begin fapply equiv.MK, { intro φ, exact ⟨equiv_of_isomorphism φ, to_respect_mul φ⟩ }, { intro v, induction v with e p, exact isomorphism_of_equiv e p }, { intro v, induction v with e p, induction e, reflexivity }, { intro φ, induction φ with φ H, induction φ, reflexivity }, end definition Group_eq_equiv (G H : Group) : G = H ≃ (G ≃g H) := begin refine (eq_equiv_fn_eq_of_equiv Group.sigma_char2 G H) ⬝e _, refine !sigma_eq_equiv ⬝e _, refine sigma_equiv_sigma_right Group_eq_equiv_lemma ⬝e _, transitivity (Σ(e : (Group.sigma_char2 G).1 ≃ (Group.sigma_char2 H).1), @is_mul_hom _ _ _ _ (to_fun e)), apply sigma_ua, exact !isomorphism.sigma_char⁻¹ᵉ end definition to_fun_Group_eq_equiv {G H : Group} (p : G = H) : Group_eq_equiv G H p ~ isomorphism_of_eq p := begin induction p, reflexivity end definition Group_eq2 {G H : Group} {p q : G = H} (r : isomorphism_of_eq p ~ isomorphism_of_eq q) : p = q := begin apply eq_of_fn_eq_fn (Group_eq_equiv G H), apply isomorphism_eq, intro g, refine to_fun_Group_eq_equiv p g ⬝ r g ⬝ (to_fun_Group_eq_equiv q g)⁻¹, end definition Group_eq_equiv_Group_iso (G₁ G₂ : Group) : G₁ = G₂ ≃ G₁ ≅ G₂ := Group_eq_equiv G₁ G₂ ⬝e (Group_iso_equiv G₁ G₂)⁻¹ᵉ definition category_Group.{u} : category Group.{u} := category.mk precategory_Group begin intro G H, apply is_equiv_of_equiv_of_homotopy (Group_eq_equiv_Group_iso G H), intro p, induction p, fapply iso_eq, apply homomorphism_eq, reflexivity end definition category_AbGroup : category AbGroup := category.mk precategory_AbGroup sorry definition Grp.{u} [constructor] : Category := category.Mk Group.{u} category_Group definition AbGrp [constructor] : Category := category.Mk AbGroup category_AbGroup end category namespace sphere -- definition constant_sphere_map_sphere {n m : ℕ} (H : n < m) (f : S* n →* S* m) : -- f ~* pconst (S* n) (S* m) := -- begin -- assert H : is_contr (Ω[n] (S* m)), -- { apply homotopy_group_sphere_le, }, -- apply phomotopy_of_eq, -- apply eq_of_fn_eq_fn !psphere_pmap_pequiv, -- apply @is_prop.elim -- end end sphere section injective_surjective open trunc fiber image /- do we want to prove this without funext before we move it? -/ variables {A B C : Type} (f : A → B) definition is_embedding_factor [is_set A] [is_set B] (g : B → C) (h : A → C) (H : g ∘ f ~ h) : is_embedding h → is_embedding f := begin induction H using homotopy.rec_on_idp, intro E, fapply is_embedding_of_is_injective, intro x y p, fapply @is_injective_of_is_embedding _ _ _ E _ _ (ap g p) end definition is_surjective_factor (g : B → C) (h : A → C) (H : g ∘ f ~ h) : is_surjective h → is_surjective g := begin induction H using homotopy.rec_on_idp, intro S, intro c, note p := S c, induction p, apply tr, fapply fiber.mk, exact f a, exact p end end injective_surjective -- Yuri Sulyma's code from HoTT MRC notation `⅀→`:(max+5) := psusp_functor notation `⅀⇒`:(max+5) := psusp_functor_phomotopy notation `Ω⇒`:(max+5) := ap1_phomotopy definition ap1_phomotopy_symm {A B : Type*} {f g : A →* B} (p : f ~* g) : (Ω⇒ p)⁻¹* = Ω⇒ (p⁻¹*) := begin induction p using phomotopy_rec_on_idp, rewrite ap1_phomotopy_refl, rewrite [+refl_symm], rewrite ap1_phomotopy_refl end definition ap1_phomotopy_trans {A B : Type*} {f g h : A →* B} (q : g ~* h) (p : f ~* g) : Ω⇒ (p ⬝* q) = Ω⇒ p ⬝* Ω⇒ q := begin induction p using phomotopy_rec_on_idp, induction q using phomotopy_rec_on_idp, rewrite trans_refl, rewrite [+ap1_phomotopy_refl], rewrite trans_refl end namespace pointed definition to_homotopy_pt_mk {A B : Type*} {f g : A →* B} (h : f ~ g) (p : h pt ⬝ respect_pt g = respect_pt f) : to_homotopy_pt (phomotopy.mk h p) = p := to_right_inv !eq_con_inv_equiv_con_eq p variables {A₀₀ A₂₀ A₀₂ A₂₂ : Type*} {f₁₀ : A₀₀ →* A₂₀} {f₁₂ : A₀₂ →* A₂₂} {f₀₁ : A₀₀ →* A₀₂} {f₂₁ : A₂₀ →* A₂₂} definition psquare_transpose (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) : psquare f₀₁ f₂₁ f₁₀ f₁₂ := p⁻¹* end pointed namespace pi definition pi_bool_left_nat {A B : bool → Type} (g : Πx, A x -> B x) : hsquare (pi_bool_left A) (pi_bool_left B) (pi_functor_right g) (prod_functor (g ff) (g tt)) := begin intro h, esimp end definition pi_bool_left_inv_nat {A B : bool → Type} (g : Πx, A x -> B x) : hsquare (pi_bool_left A)⁻¹ᵉ (pi_bool_left B)⁻¹ᵉ (prod_functor (g ff) (g tt)) (pi_functor_right g) := hhinverse (pi_bool_left_nat g) end pi namespace equiv definition rec_eq_of_equiv {A : Type} {P : A → A → Type} (e : Πa a', a = a' ≃ P a a') {a a' : A} (Q : P a a' → Type) (H : Π(q : a = a'), Q (e a a' q)) : Π(p : P a a'), Q p := equiv_rect (e a a') Q H definition rec_idp_of_equiv {A : Type} {P : A → A → Type} (e : Πa a', a = a' ≃ P a a') {a : A} (r : P a a) (s : e a a idp = r) (Q : Πa', P a a' → Type) (H : Q a r) ⦃a' : A⦄ (p : P a a') : Q a' p := rec_eq_of_equiv e _ begin intro q, induction q, induction s, exact H end p definition rec_idp_of_equiv_idp {A : Type} {P : A → A → Type} (e : Πa a', a = a' ≃ P a a') {a : A} (r : P a a) (s : e a a idp = r) (Q : Πa', P a a' → Type) (H : Q a r) : rec_idp_of_equiv e r s Q H r = H := begin induction s, refine !is_equiv_rect_comp ⬝ _, reflexivity end end equiv