/- Copyright (c) 2017 Yuri Sulyma, Favonia Released under Apache 2.0 license as described in the file LICENSE. Authors: Yuri Sulyma, Favonia Reduced homology theories -/ import ..homotopy.spectrum ..homotopy.EM ..algebra.arrow_group ..algebra.direct_sum ..homotopy.fwedge ..choice ..homotopy.pushout ..move_to_lib open eq spectrum int pointed group algebra sphere nat equiv susp is_trunc function fwedge cofiber lift is_equiv choice algebra pi smash namespace homology /- homology theory -/ structure homology_theory.{u} : Type.{u+1} := (HH : ℤ → pType.{u} → AbGroup.{u}) (Hh : Π(n : ℤ) {X Y : Type*} (f : X →* Y), HH n X →g HH n Y) (Hpid : Π(n : ℤ) {X : Type*} (x : HH n X), Hh n (pid X) x = x) (Hpcompose : Π(n : ℤ) {X Y Z : Type*} (f : Y →* Z) (g : X →* Y), Hh n (f ∘* g) ~ Hh n f ∘ Hh n g) (Hpsusp : Π(n : ℤ) (X : Type*), HH (succ n) (psusp X) ≃g HH n X) (Hpsusp_natural : Π(n : ℤ) {X Y : Type*} (f : X →* Y), Hpsusp n Y ∘ Hh (succ n) (psusp_functor f) ~ Hh n f ∘ Hpsusp n X) (Hexact : Π(n : ℤ) {X Y : Type*} (f : X →* Y), is_exact_g (Hh n f) (Hh n (pcod f))) (Hadditive : Π(n : ℤ) {I : Set.{u}} (X : I → Type*), is_equiv (dirsum_elim (λi, Hh n (pinl i)) : dirsum (λi, HH n (X i)) → HH n (⋁ X))) structure ordinary_homology_theory.{u} extends homology_theory.{u} : Type.{u+1} := (Hdimension : Π(n : ℤ), n ≠ 0 → is_contr (HH n (plift (psphere 0)))) section parameter (theory : homology_theory) open homology_theory theorem HH_base_indep (n : ℤ) {A : Type} (a b : A) : HH theory n (pType.mk A a) ≃g HH theory n (pType.mk A b) := calc HH theory n (pType.mk A a) ≃g HH theory (int.succ n) (psusp A) : by exact (Hpsusp theory n (pType.mk A a)) ⁻¹ᵍ ... ≃g HH theory n (pType.mk A b) : by exact Hpsusp theory n (pType.mk A b) theorem Hh_homotopy' (n : ℤ) {A B : Type*} (f : A → B) (p q : f pt = pt) : Hh theory n (pmap.mk f p) ~ Hh theory n (pmap.mk f q) := λ x, calc Hh theory n (pmap.mk f p) x = Hh theory n (pmap.mk f p) (Hpsusp theory n A ((Hpsusp theory n A)⁻¹ᵍ x)) : by exact ap (Hh theory n (pmap.mk f p)) (equiv.to_right_inv (equiv_of_isomorphism (Hpsusp theory n A)) x)⁻¹ ... = Hpsusp theory n B (Hh theory (succ n) (pmap.mk (susp.functor f) !refl) ((Hpsusp theory n A)⁻¹ x)) : by exact (Hpsusp_natural theory n (pmap.mk f p) ((Hpsusp theory n A)⁻¹ᵍ x))⁻¹ ... = Hh theory n (pmap.mk f q) (Hpsusp theory n A ((Hpsusp theory n A)⁻¹ x)) : by exact Hpsusp_natural theory n (pmap.mk f q) ((Hpsusp theory n A)⁻¹ x) ... = Hh theory n (pmap.mk f q) x : by exact ap (Hh theory n (pmap.mk f q)) (equiv.to_right_inv (equiv_of_isomorphism (Hpsusp theory n A)) x) theorem Hh_homotopy (n : ℤ) {A B : Type*} (f g : A →* B) (h : f ~ g) : Hh theory n f ~ Hh theory n g := λ x, calc Hh theory n f x = Hh theory n (pmap.mk f (respect_pt f)) x : by exact ap (λ f, Hh theory n f x) (pmap.eta f)⁻¹ ... = Hh theory n (pmap.mk f (h pt ⬝ respect_pt g)) x : by exact Hh_homotopy' n f (respect_pt f) (h pt ⬝ respect_pt g) x ... = Hh theory n g x : by exact ap (λ f, Hh theory n f x) (@pmap_eq _ _ (pmap.mk f (h pt ⬝ respect_pt g)) _ h (refl (h pt ⬝ respect_pt g))) definition HH_isomorphism (n : ℤ) {A B : Type*} (e : A ≃* B) : HH theory n A ≃g HH theory n B := begin fapply isomorphism.mk, { exact Hh theory n e }, fapply adjointify, { exact Hh theory n e⁻¹ᵉ* }, { intro x, exact calc Hh theory n e (Hh theory n e⁻¹ᵉ* x) = Hh theory n (e ∘* e⁻¹ᵉ*) x : by exact (Hpcompose theory n e e⁻¹ᵉ* x)⁻¹ ... = Hh theory n !pid x : by exact Hh_homotopy n (e ∘* e⁻¹ᵉ*) !pid (to_right_inv e) x ... = x : by exact Hpid theory n x }, { intro x, exact calc Hh theory n e⁻¹ᵉ* (Hh theory n e x) = Hh theory n (e⁻¹ᵉ* ∘* e) x : by exact (Hpcompose theory n e⁻¹ᵉ* e x)⁻¹ ... = Hh theory n !pid x : by exact Hh_homotopy n (e⁻¹ᵉ* ∘* e) !pid (to_left_inv e) x ... = x : by exact Hpid theory n x } end end /- homology theory associated to a spectrum -/ definition homology (X : Type*) (E : spectrum) (n : ℤ) : AbGroup := shomotopy_group n (smash_spectrum X E) definition parametrized_homology {X : Type*} (E : X → spectrum) (n : ℤ) : AbGroup := sorry definition ordinary_homology [reducible] (X : Type*) (G : AbGroup) (n : ℤ) : AbGroup := homology X (EM_spectrum G) n definition ordinary_homology_Z [reducible] (X : Type*) (n : ℤ) : AbGroup := ordinary_homology X agℤ n notation `H_` n `[`:0 X:0 `, ` E:0 `]`:0 := homology X E n notation `H_` n `[`:0 X:0 `]`:0 := ordinary_homology_Z X n notation `pH_` n `[`:0 binders `, ` r:(scoped E, parametrized_homology E n) `]`:0 := r definition unpointed_homology (X : Type) (E : spectrum) (n : ℤ) : AbGroup := H_ n[X₊, E] definition homology_functor [constructor] {X Y : Type*} {E F : spectrum} (f : X →* Y) (g : E →ₛ F) (n : ℤ) : homology X E n →g homology Y F n := shomotopy_group_fun n (smash_spectrum_fun f g) definition homology_theory_spectrum.{u} [constructor] (E : spectrum.{u}) : homology_theory.{u} := begin refine homology_theory.mk _ _ _ _ _ _ _ _, exact (λn X, H_ n[X, E]), exact (λn X Y f, homology_functor f (sid E) n), exact sorry, -- Hid is uninteresting but potentially very hard to prove exact sorry, exact sorry, exact sorry, exact sorry, exact sorry -- sorry -- sorry -- sorry -- sorry -- sorry -- sorry -- (λn A, H^n[A, Y]) -- (λn A B f, cohomology_isomorphism f Y n) -- (λn A, cohomology_isomorphism_refl A Y n) -- (λn A B f, cohomology_functor f Y n) -- (λn A B f g p, cohomology_functor_phomotopy p Y n) -- (λn A B f x, cohomology_functor_phomotopy_refl f Y n x) -- (λn A x, cohomology_functor_pid A Y n x) -- (λn A B C g f x, cohomology_functor_pcompose g f Y n x) -- (λn A, cohomology_psusp A Y n) -- (λn A B f, cohomology_psusp_natural f Y n) -- (λn A B f, cohomology_exact f Y n) -- (λn I A H, spectrum_additive H A Y n) end end homology