import .LES_of_homotopy_groups homotopy.connectedness homotopy.homotopy_group open eq is_trunc pointed homotopy is_equiv fiber equiv trunc nat chain_complex prod fin algebra group trunc_index function namespace nat open sigma sum definition eq_even_or_eq_odd (n : ℕ) : (Σk, 2 * k = n) ⊎ (Σk, 2 * k + 1 = n) := begin induction n with n IH, { exact inl ⟨0, idp⟩}, { induction IH with H H: induction H with k p: induction p, { exact inr ⟨k, idp⟩}, { refine inl ⟨k+1, idp⟩}} end definition rec_on_even_odd {P : ℕ → Type} (n : ℕ) (H : Πk, P (2 * k)) (H2 : Πk, P (2 * k + 1)) : P n := begin cases eq_even_or_eq_odd n with v v: induction v with k p: induction p, { exact H k}, { exact H2 k} end end nat open nat namespace is_conn theorem is_contr_HG_fiber_of_is_connected {A B : Type*} (k n : ℕ) (f : A →* B) [H : is_conn_map n f] (H2 : k ≤ n) : is_contr (π[k] (pfiber f)) := @(trivial_homotopy_group_of_is_conn (pfiber f) H2) (H pt) -- TODO: use this for trivial_homotopy_group_of_is_conn (in homotopy.homotopy_group) theorem is_conn_of_le (A : Type) {n k : ℕ₋₂} (H : n ≤ k) [is_conn k A] : is_conn n A := begin apply is_contr_equiv_closed, apply trunc_trunc_equiv_left _ n k H end definition zero_le_of_nat (n : ℕ) : 0 ≤[ℕ₋₂] n := of_nat_le_of_nat (zero_le n) local attribute is_conn_map [reducible] --TODO theorem is_conn_map_of_le {A B : Type} (f : A → B) {n k : ℕ₋₂} (H : n ≤ k) [is_conn_map k f] : is_conn_map n f := λb, is_conn_of_le _ H definition is_surjective_trunc_functor {A B : Type} (n : ℕ₋₂) (f : A → B) [H : is_surjective f] : is_surjective (trunc_functor n f) := begin cases n with n: intro b, { exact tr (fiber.mk !center !is_prop.elim)}, { refine @trunc.rec _ _ _ _ _ b, {intro x, exact is_trunc_of_le _ !minus_one_le_succ}, clear b, intro b, induction H b with v, induction v with a p, exact tr (fiber.mk (tr a) (ap tr p))} end definition is_surjective_cancel_right {A B C : Type} (g : B → C) (f : A → B) [H : is_surjective (g ∘ f)] : is_surjective g := begin intro c, induction H c with v, induction v with a p, exact tr (fiber.mk (f a) p) end -- Lemma 7.5.14 theorem is_equiv_trunc_functor_of_is_conn_map {A B : Type} (n : ℕ₋₂) (f : A → B) [H : is_conn_map n f] : is_equiv (trunc_functor n f) := begin exact sorry end definition is_equiv_tinverse [constructor] (A : Type*) : is_equiv (@tinverse A) := by apply @is_equiv_trunc_functor; apply is_equiv_eq_inverse local attribute comm_group.to_group [coercion] local attribute is_equiv_tinverse [instance] theorem is_equiv_π_of_is_connected.{u} {A B : pType.{u}} (n k : ℕ) (f : A →* B) [H : is_conn_map n f] (H2 : k ≤ n) : is_equiv (π→[k] f) := begin induction k using rec_on_even_odd with k: cases k with k, { /- k = 0 -/ change (is_equiv (trunc_functor 0 f)), apply is_equiv_trunc_functor_of_is_conn_map, refine is_conn_map_of_le f (zero_le_of_nat n)}, { /- k > 0 even -/ have H2' : 2 * k + 1 ≤ n, from le.trans !self_le_succ H2, exact @is_equiv_of_trivial _ (LES_of_homotopy_groups3 f) _ (is_exact_LES_of_homotopy_groups3 f (k, 5)) (is_exact_LES_of_homotopy_groups3 f (succ k, 0)) (@is_contr_HG_fiber_of_is_connected A B (2 * k + 1) n f H H2') (@is_contr_HG_fiber_of_is_connected A B (2 * succ k) n f H H2) (@pgroup_of_group _ (comm_group_LES_of_homotopy_groups3 f k 0) idp) (@pgroup_of_group _ (comm_group_LES_of_homotopy_groups3 f k 1) idp) (homomorphism.struct (homomorphism_LES_of_homotopy_groups_fun3 f (k, 0)))}, { /- k = 1 -/ exact sorry}, { /- k > 1 odd -/ have H2' : 2 * succ k ≤ n, from le.trans !self_le_succ H2, have H3 : is_equiv (π→*[2*(succ k) + 1] f ∘* tinverse), from @is_equiv_of_trivial _ (LES_of_homotopy_groups3 f) _ (is_exact_LES_of_homotopy_groups3 f (succ k, 2)) (is_exact_LES_of_homotopy_groups3 f (succ k, 3)) (@is_contr_HG_fiber_of_is_connected A B (2 * succ k) n f H H2') (@is_contr_HG_fiber_of_is_connected A B (2 * succ k + 1) n f H H2) (@pgroup_of_group _ (comm_group_LES_of_homotopy_groups3 f k 3) idp) (@pgroup_of_group _ (comm_group_LES_of_homotopy_groups3 f k 4) idp) (homomorphism.struct (homomorphism_LES_of_homotopy_groups_fun3 f (k, 3))), exact @(is_equiv.cancel_right tinverse) !is_equiv_tinverse (pmap.to_fun (π→*[2*(succ k) + 1] f)) H3} end theorem is_surjective_π_of_is_connected.{u} {A B : pType.{u}} (n : ℕ) (f : A →* B) [H : is_conn_map n f] : is_surjective (π→[n + 1] f) := begin induction n using rec_on_even_odd with n, { cases n with n, { exact sorry}, { have H3 : is_surjective (π→*[2*(succ n) + 1] f ∘* tinverse), from @is_surjective_of_trivial _ (LES_of_homotopy_groups3 f) _ (is_exact_LES_of_homotopy_groups3 f (succ n, 2)) (@is_contr_HG_fiber_of_is_connected A B (2 * succ n) (2 * succ n) f H !le.refl), exact @(is_surjective_cancel_right (pmap.to_fun (π→*[2*(succ n) + 1] f)) tinverse) H3}}, { exact @is_surjective_of_trivial _ (LES_of_homotopy_groups3 f) _ (is_exact_LES_of_homotopy_groups3 f (k, 5)) (@is_contr_HG_fiber_of_is_connected A B (2 * k + 1) (2 * k + 1) f H !le.refl)} end end is_conn