/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn, Egbert Rijke Constructions with groups -/ import .quotient_group .free_commutative_group open eq algebra is_trunc set_quotient relation sigma prod sum list trunc function equiv sigma.ops namespace group variables {G G' : AddGroup} (H : subgroup_rel G) (N : normal_subgroup_rel G) {g g' h h' k : G} {A B : AddAbGroup} variables (X : Set) {l l' : list (X ⊎ X)} section parameters {I : Set} (Y : I → AddAbGroup) variables {A' : AddAbGroup} {Y' : I → AddAbGroup} definition dirsum_carrier : AddAbGroup := free_ab_group (trunctype.mk (Σi, Y i) _) local abbreviation ι [constructor] := @free_ab_group_inclusion inductive dirsum_rel : dirsum_carrier → Type := | rmk : Πi y₁ y₂, dirsum_rel (ι ⟨i, y₁⟩ + ι ⟨i, y₂⟩ + -(ι ⟨i, y₁ + y₂⟩)) definition dirsum : AddAbGroup := quotient_ab_group_gen dirsum_carrier (λg, ∥dirsum_rel g∥) -- definition dirsum_carrier_incl [constructor] (i : I) : Y i →a dirsum_carrier := definition dirsum_incl [constructor] (i : I) : Y i →a dirsum := add_homomorphism.mk (λy, class_of (ι ⟨i, y⟩)) begin intro g h, symmetry, apply gqg_eq_of_rel, apply tr, apply dirsum_rel.rmk end parameter {Y} definition dirsum.rec {P : dirsum → Type} [H : Πg, is_prop (P g)] (h₁ : Πi (y : Y i), P (dirsum_incl i y)) (h₂ : P 0) (h₃ : Πg h, P g → P h → P (g + h)) : Πg, P g := begin refine @set_quotient.rec_prop _ _ _ H _, refine @set_quotient.rec_prop _ _ _ (λx, !H) _, esimp, intro l, induction l with s l ih, exact h₂, induction s with v v, induction v with i y, exact h₃ _ _ (h₁ i y) ih, induction v with i y, refine h₃ (gqg_map _ _ (class_of [inr ⟨i, y⟩])) _ _ ih, refine transport P _ (h₁ i (-y)), refine _ ⬝ !one_mul, refine _ ⬝ ap (λx, mul x _) (to_respect_zero (dirsum_incl i)), apply gqg_eq_of_rel', apply tr, esimp, refine transport dirsum_rel _ (dirsum_rel.rmk i (-y) y), rewrite [add.left_inv, add.assoc], end definition dirsum_homotopy {φ ψ : dirsum →a A'} (h : Πi (y : Y i), φ (dirsum_incl i y) = ψ (dirsum_incl i y)) : φ ~ ψ := begin refine dirsum.rec _ _ _, exact h, refine !to_respect_zero ⬝ !to_respect_zero⁻¹, intro g₁ g₂ h₁ h₂, rewrite [+ to_respect_add', h₁, h₂] end definition dirsum_elim_resp_quotient (f : Πi, Y i →a A') (g : dirsum_carrier) (r : ∥dirsum_rel g∥) : free_ab_group_elim (λv, f v.1 v.2) g = 1 := begin induction r with r, induction r, rewrite [to_respect_add, to_respect_neg, to_respect_add, ▸*, ↑foldl, +one_mul, to_respect_add'], apply mul.right_inv end definition dirsum_elim [constructor] (f : Πi, Y i →a A') : dirsum →a A' := gqg_elim _ (free_ab_group_elim (λv, f v.1 v.2)) (dirsum_elim_resp_quotient f) definition dirsum_elim_compute (f : Πi, Y i →a A') (i : I) : dirsum_elim f ∘g dirsum_incl i ~ f i := begin intro g, apply zero_add end definition dirsum_elim_unique (f : Πi, Y i →a A') (k : dirsum →a A') (H : Πi, k ∘g dirsum_incl i ~ f i) : k ~ dirsum_elim f := begin apply gqg_elim_unique, apply free_ab_group_elim_unique, intro x, induction x with i y, exact H i y end end variables {I J : Set} {Y Y' Y'' : I → AddAbGroup} definition dirsum_functor [constructor] (f : Πi, Y i →a Y' i) : dirsum Y →a dirsum Y' := dirsum_elim (λi, dirsum_incl Y' i ∘g f i) theorem dirsum_functor_compose (f' : Πi, Y' i →a Y'' i) (f : Πi, Y i →a Y' i) : dirsum_functor f' ∘a dirsum_functor f ~ dirsum_functor (λi, f' i ∘a f i) := begin apply dirsum_homotopy, intro i y, reflexivity, end variable (Y) definition dirsum_functor_gid : dirsum_functor (λi, aid (Y i)) ~ aid (dirsum Y) := begin apply dirsum_homotopy, intro i y, reflexivity, end variable {Y} definition dirsum_functor_add (f f' : Πi, Y i →a Y' i) : homomorphism_add (dirsum_functor f) (dirsum_functor f') ~ dirsum_functor (λi, homomorphism_add (f i) (f' i)) := begin apply dirsum_homotopy, intro i y, esimp, exact sorry end definition dirsum_functor_homotopy {f f' : Πi, Y i →a Y' i} (p : f ~2 f') : dirsum_functor f ~ dirsum_functor f' := begin apply dirsum_homotopy, intro i y, exact sorry end definition dirsum_functor_left [constructor] (f : J → I) : dirsum (Y ∘ f) →a dirsum Y := dirsum_elim (λj, dirsum_incl Y (f j)) end group