/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn, Egbert Rijke, Jeremy Avigad Constructions with groups -/ import hit.set_quotient .subgroup ..move_to_lib types.equiv open eq algebra is_trunc set_quotient relation sigma sigma.ops prod trunc function equiv is_equiv open property namespace group variables {G G' : Group} (H : property G) [is_subgroup G H] (N : property G) [is_normal_subgroup G N] {g g' h h' k : G} (N' : property G') [is_normal_subgroup G' N'] variables {A B : AbGroup} /- Quotient Group -/ definition homotopy_of_homomorphism_eq {f g : G →g G'}(p : f = g) : f ~ g := λx : G , ap010 group_fun p x definition quotient_rel [constructor] (g h : G) : Prop := g * h⁻¹ ∈ N variable {N} -- We prove that quotient_rel is an equivalence relation theorem quotient_rel_refl (g : G) : quotient_rel N g g := transport (λx, N x) !mul.right_inv⁻¹ (subgroup_one_mem N) theorem quotient_rel_symm (r : quotient_rel N g h) : quotient_rel N h g := transport (λx, N x) (!mul_inv ⬝ ap (λx, x * _) !inv_inv) begin apply subgroup_inv_mem r end theorem quotient_rel_trans (r : quotient_rel N g h) (s : quotient_rel N h k) : quotient_rel N g k := have H1 : N ((g * h⁻¹) * (h * k⁻¹)), from subgroup_mul_mem r s, have H2 : (g * h⁻¹) * (h * k⁻¹) = g * k⁻¹, from calc (g * h⁻¹) * (h * k⁻¹) = ((g * h⁻¹) * h) * k⁻¹ : by rewrite [mul.assoc (g * h⁻¹)] ... = g * k⁻¹ : by rewrite inv_mul_cancel_right, show N (g * k⁻¹), by rewrite [-H2]; exact H1 theorem is_equivalence_quotient_rel : is_equivalence (quotient_rel N) := is_equivalence.mk quotient_rel_refl (λg h, quotient_rel_symm) (λg h k, quotient_rel_trans) -- We prove that quotient_rel respects inverses and multiplication, so -- it is a congruence relation theorem quotient_rel_resp_inv (r : quotient_rel N g h) : quotient_rel N g⁻¹ h⁻¹ := have H1 : g⁻¹ * (h * g⁻¹) * g ∈ N, from is_normal_subgroup' g (quotient_rel_symm r), have H2 : g⁻¹ * (h * g⁻¹) * g = g⁻¹ * h⁻¹⁻¹, from calc g⁻¹ * (h * g⁻¹) * g = g⁻¹ * h * g⁻¹ * g : by rewrite -mul.assoc ... = g⁻¹ * h : inv_mul_cancel_right ... = g⁻¹ * h⁻¹⁻¹ : by rewrite algebra.inv_inv, show g⁻¹ * h⁻¹⁻¹ ∈ N, by rewrite [-H2]; exact H1 theorem quotient_rel_resp_mul (r : quotient_rel N g h) (r' : quotient_rel N g' h') : quotient_rel N (g * g') (h * h') := have H1 : g * ((g' * h'⁻¹) * h⁻¹) ∈ N, from normal_subgroup_insert r' r, have H2 : g * ((g' * h'⁻¹) * h⁻¹) = (g * g') * (h * h')⁻¹, from calc g * ((g' * h'⁻¹) * h⁻¹) = g * (g' * (h'⁻¹ * h⁻¹)) : by rewrite [mul.assoc] ... = (g * g') * (h'⁻¹ * h⁻¹) : mul.assoc ... = (g * g') * (h * h')⁻¹ : by rewrite [mul_inv], show N ((g * g') * (h * h')⁻¹), from transport (λx, N x) H2 H1 local attribute is_equivalence_quotient_rel [instance] variable (N) definition qg : Type := set_quotient (quotient_rel N) variable {N} local attribute qg [reducible] definition quotient_one [constructor] : qg N := class_of one definition quotient_inv [unfold 3] : qg N → qg N := quotient_unary_map has_inv.inv (λg g' r, quotient_rel_resp_inv r) definition quotient_mul [unfold 3 4] : qg N → qg N → qg N := quotient_binary_map has_mul.mul (λg g' r h h' r', quotient_rel_resp_mul r r') section local notation 1 := quotient_one local postfix ⁻¹ := quotient_inv local infix * := quotient_mul theorem quotient_mul_assoc (g₁ g₂ g₃ : qg N) : g₁ * g₂ * g₃ = g₁ * (g₂ * g₃) := begin refine set_quotient.rec_prop _ g₁, refine set_quotient.rec_prop _ g₂, refine set_quotient.rec_prop _ g₃, clear g₁ g₂ g₃, intro g₁ g₂ g₃, exact ap class_of !mul.assoc end theorem quotient_one_mul (g : qg N) : 1 * g = g := begin refine set_quotient.rec_prop _ g, clear g, intro g, exact ap class_of !one_mul end theorem quotient_mul_one (g : qg N) : g * 1 = g := begin refine set_quotient.rec_prop _ g, clear g, intro g, exact ap class_of !mul_one end theorem quotient_mul_left_inv (g : qg N) : g⁻¹ * g = 1 := begin refine set_quotient.rec_prop _ g, clear g, intro g, exact ap class_of !mul.left_inv end theorem quotient_mul_comm {G : AbGroup} {N : property G} [is_normal_subgroup G N] (g h : qg N) : g * h = h * g := begin refine set_quotient.rec_prop _ g, clear g, intro g, refine set_quotient.rec_prop _ h, clear h, intro h, apply ap class_of, esimp, apply mul.comm end end variable (N) definition group_qg [constructor] : group (qg N) := group.mk _ quotient_mul quotient_mul_assoc quotient_one quotient_one_mul quotient_mul_one quotient_inv quotient_mul_left_inv definition quotient_group [constructor] : Group := Group.mk _ (group_qg N) definition ab_group_qg [constructor] {G : AbGroup} (N : property G) [is_normal_subgroup G N] : ab_group (qg N) := ⦃ab_group, group_qg N, mul_comm := quotient_mul_comm⦄ definition quotient_ab_group [constructor] {G : AbGroup} (N : property G) [is_subgroup G N] : AbGroup := AbGroup.mk _ (@ab_group_qg G N (is_normal_subgroup_ab _)) definition qg_map [constructor] : G →g quotient_group N := homomorphism.mk class_of (λ g h, idp) definition ab_qg_map {G : AbGroup} (N : property G) [is_subgroup G N] : G →g quotient_ab_group N := @qg_map _ N (is_normal_subgroup_ab _) definition is_surjective_ab_qg_map {A : AbGroup} (N : property A) [is_subgroup A N] : is_surjective (ab_qg_map N) := begin intro x, induction x, fapply image.mk, exact a, reflexivity, apply is_prop.elimo end namespace quotient notation `⟦`:max a `⟧`:0 := qg_map _ a end quotient open quotient variables {N N'} definition qg_map_eq_one (g : G) (H : N g) : qg_map N g = 1 := begin apply eq_of_rel, have e : (g * 1⁻¹ = g), from calc g * 1⁻¹ = g * 1 : one_inv ... = g : mul_one, unfold quotient_rel, rewrite e, exact H end definition ab_qg_map_eq_one {K : property A} [is_subgroup A K] (g :A) (H : K g) : ab_qg_map K g = 1 := begin apply eq_of_rel, have e : (g * 1⁻¹ = g), from calc g * 1⁻¹ = g * 1 : one_inv ... = g : mul_one, unfold quotient_rel, xrewrite e, exact H end --- there should be a smarter way to do this!! Please have a look, Floris. definition rel_of_qg_map_eq_one (g : G) (H : qg_map N g = 1) : g ∈ N := begin have e : (g * 1⁻¹ = g), from calc g * 1⁻¹ = g * 1 : one_inv ... = g : mul_one, rewrite (inverse e), apply rel_of_eq _ H end definition rel_of_ab_qg_map_eq_one {K : property A} [is_subgroup A K] (a :A) (H : ab_qg_map K a = 1) : a ∈ K := begin have e : (a * 1⁻¹ = a), from calc a * 1⁻¹ = a * 1 : one_inv ... = a : mul_one, rewrite (inverse e), have is_normal_subgroup A K, from is_normal_subgroup_ab _, apply rel_of_eq (quotient_rel K) H end definition quotient_group_elim_fun [unfold 6] (f : G →g G') (H : Π⦃g⦄, N g → f g = 1) (g : quotient_group N) : G' := begin refine set_quotient.elim f _ g, intro g h K, apply eq_of_mul_inv_eq_one, have e : f (g * h⁻¹) = f g * (f h)⁻¹, from calc f (g * h⁻¹) = f g * (f h⁻¹) : to_respect_mul ... = f g * (f h)⁻¹ : to_respect_inv, rewrite (inverse e), apply H, exact K end definition quotient_group_elim [constructor] (f : G →g G') (H : Π⦃g⦄, g ∈ N → f g = 1) : quotient_group N →g G' := begin fapply homomorphism.mk, -- define function { exact quotient_group_elim_fun f H }, { intro g h, induction g using set_quotient.rec_prop with g, induction h using set_quotient.rec_prop with h, krewrite (inverse (to_respect_mul (qg_map N) g h)), unfold qg_map, esimp, exact to_respect_mul f g h } end example {K : property A} [is_subgroup A K] : quotient_ab_group K = @quotient_group A K (is_normal_subgroup_ab _) := rfl definition quotient_ab_group_elim [constructor] {K : property A} [is_subgroup A K] (f : A →g B) (H : Π⦃g⦄, g ∈ K → f g = 1) : quotient_ab_group K →g B := @quotient_group_elim A B K (is_normal_subgroup_ab _) f H definition quotient_group_compute (f : G →g G') (H : Π⦃g⦄, N g → f g = 1) (g : G) : quotient_group_elim f H (qg_map N g) = f g := begin reflexivity end definition gelim_unique (f : G →g G') (H : Π⦃g⦄, g ∈ N → f g = 1) (k : quotient_group N →g G') : ( k ∘g qg_map N ~ f ) → k ~ quotient_group_elim f H := begin intro K cg, induction cg using set_quotient.rec_prop with g, exact K g end definition ab_gelim_unique {K : property A} [is_subgroup A K] (f : A →g B) (H : Π (a :A), a ∈ K → f a = 1) (k : quotient_ab_group K →g B) : ( k ∘g ab_qg_map K ~ f) → k ~ quotient_ab_group_elim f H := --@quotient_group_elim A B K (is_normal_subgroup_ab _) f H := @gelim_unique _ _ K (is_normal_subgroup_ab _) f H _ definition qg_universal_property (f : G →g G') (H : Π⦃g⦄, N g → f g = 1) : is_contr (Σ(g : quotient_group N →g G'), g ∘ qg_map N ~ f) := begin fapply is_contr.mk, -- give center of contraction { fapply sigma.mk, exact quotient_group_elim f H, exact quotient_group_compute f H }, -- give contraction { intro pair, induction pair with g p, fapply sigma_eq, {esimp, apply homomorphism_eq, symmetry, exact gelim_unique f H g p}, {fapply is_prop.elimo} } end definition ab_qg_universal_property {K : property A} [is_subgroup A K] (f : A →g B) (H : Π (a :A), K a → f a = 1) : is_contr ((Σ(g : quotient_ab_group K →g B), g ∘g ab_qg_map K ~ f) ) := begin fapply @qg_universal_property _ _ K (is_normal_subgroup_ab _), exact H end definition quotient_group_functor_contr {K L : property A} [is_subgroup A K] [is_subgroup A L] (H : Π (a : A), K a → L a) : is_contr ((Σ(g : quotient_ab_group K →g quotient_ab_group L), g ∘g ab_qg_map K ~ ab_qg_map L) ) := begin fapply ab_qg_universal_property, intro a p, fapply ab_qg_map_eq_one, exact H a p end definition quotient_group_functor_id {K : property A} [is_subgroup A K] (H : Π (a : A), K a → K a) : center' (@quotient_group_functor_contr _ K K _ _ H) = ⟨gid (quotient_ab_group K), λ x, rfl⟩ := begin note p := @quotient_group_functor_contr _ K K _ _ H, fapply eq_of_is_contr, end section quotient_group_iso_ua set_option pp.universes true definition subgroup_rel_eq' {K L : property A} [HK : is_subgroup A K] [HL : is_subgroup A L] (htpy : Π (a : A), K a ≃ L a) : K = L := begin induction HK with Rone Rmul Rinv, induction HL with Rone' Rmul' Rinv', esimp at *, assert q : K = L, begin fapply eq_of_homotopy, intro a, fapply tua, exact htpy a, end, induction q, assert q : Rone = Rone', begin fapply is_prop.elim, end, induction q, assert q2 : @Rmul = @Rmul', begin fapply is_prop.elim, end, induction q2, assert q : @Rinv = @Rinv', begin fapply is_prop.elim, end, induction q, reflexivity end definition subgroup_rel_eq {K L : property A} [is_subgroup A K] [is_subgroup A L] (K_in_L : Π (a : A), a ∈ K → a ∈ L) (L_in_K : Π (a : A), a ∈ L → a ∈ K) : K = L := begin have htpy : Π (a : A), K a ≃ L a, begin intro a, apply @equiv_of_is_prop (a ∈ K) (a ∈ L) _ _ (K_in_L a) (L_in_K a), end, exact subgroup_rel_eq' htpy, end definition eq_of_ab_qg_group' {K L : property A} [HK : is_subgroup A K] [HL : is_subgroup A L] (p : K = L) : quotient_ab_group K = quotient_ab_group L := begin revert HK, revert HL, induction p, intros, have HK = HL, begin apply @is_prop.elim _ _ HK HL end, rewrite this end definition iso_of_eq {B : AbGroup} (p : A = B) : A ≃g B := begin induction p, fapply isomorphism.mk, exact gid A, fapply adjointify, exact id, intro a, reflexivity, intro a, reflexivity end definition iso_of_ab_qg_group' {K L : property A} [is_subgroup A K] [is_subgroup A L] (p : K = L) : quotient_ab_group K ≃g quotient_ab_group L := iso_of_eq (eq_of_ab_qg_group' p) /- definition htpy_of_ab_qg_group' {K L : property A} [HK : is_subgroup A K] [HL : is_subgroup A L] (p : K = L) : (iso_of_ab_qg_group' p) ∘g ab_qg_map K ~ ab_qg_map L := begin revert HK, revert HL, induction p, intros HK HL, unfold iso_of_ab_qg_group', unfold ab_qg_map -- have HK = HL, begin apply @is_prop.elim _ _ HK HL end, -- rewrite this -- induction p, reflexivity end -/ definition eq_of_ab_qg_group {K L : property A} [is_subgroup A K] [is_subgroup A L] (K_in_L : Π (a : A), K a → L a) (L_in_K : Π (a : A), L a → K a) : quotient_ab_group K = quotient_ab_group L := eq_of_ab_qg_group' (subgroup_rel_eq K_in_L L_in_K) definition iso_of_ab_qg_group {K L : property A} [is_subgroup A K] [is_subgroup A L] (K_in_L : Π (a : A), K a → L a) (L_in_K : Π (a : A), L a → K a) : quotient_ab_group K ≃g quotient_ab_group L := iso_of_eq (eq_of_ab_qg_group K_in_L L_in_K) /- definition htpy_of_ab_qg_group {K L : property A} [is_subgroup A K] [is_subgroup A L] (K_in_L : Π (a : A), K a → L a) (L_in_K : Π (a : A), L a → K a) : iso_of_ab_qg_group K_in_L L_in_K ∘g ab_qg_map K ~ ab_qg_map L := begin fapply htpy_of_ab_qg_group' end -/ end quotient_group_iso_ua section quotient_group_iso variables {K L : property A} [is_subgroup A K] [is_subgroup A L] (H1 : Π (a : A), K a → L a) (H2 : Π (a : A), L a → K a) include H1 include H2 definition quotient_group_iso_contr_KL_map : quotient_ab_group K →g quotient_ab_group L := pr1 (center' (quotient_group_functor_contr H1)) definition quotient_group_iso_contr_KL_triangle : quotient_group_iso_contr_KL_map H1 H2 ∘g ab_qg_map K ~ ab_qg_map L := pr2 (center' (quotient_group_functor_contr H1)) definition quotient_group_iso_contr_KK : is_contr (Σ (g : quotient_ab_group K →g quotient_ab_group K), g ∘g ab_qg_map K ~ ab_qg_map K) := @quotient_group_functor_contr A K K _ _ (λ a, H2 a ∘ H1 a) definition quotient_group_iso_contr_LK : quotient_ab_group L →g quotient_ab_group K := pr1 (center' (@quotient_group_functor_contr A L K _ _ H2)) definition quotient_group_iso_contr_LL : quotient_ab_group L →g quotient_ab_group L := pr1 (center' (@quotient_group_functor_contr A L L _ _ (λ a, H1 a ∘ H2 a))) /- definition quotient_group_iso : quotient_ab_group K ≃g quotient_ab_group L := begin fapply isomorphism.mk, exact pr1 (center' (quotient_group_iso_contr_KL H1 H2)), fapply adjointify, exact quotient_group_iso_contr_LK H1 H2, intro x, induction x, reflexivity, end -/ definition quotient_group_iso_contr_aux : is_contr (Σ(gh : Σ (g : quotient_ab_group K →g quotient_ab_group L), g ∘g ab_qg_map K ~ ab_qg_map L), is_equiv (group_fun (pr1 gh))) := begin fapply is_trunc_sigma, exact quotient_group_functor_contr H1, intro a, induction a with g h, fapply is_contr_of_inhabited_prop, fapply adjointify, rexact group_fun (pr1 (center' (@quotient_group_functor_contr A L K _ _ H2))), note htpy := homotopy_of_eq (ap group_fun (ap sigma.pr1 (@quotient_group_functor_id _ L _ (λ a, (H1 a) ∘ (H2 a))))), have KK : is_contr ((Σ(g' : quotient_ab_group K →g quotient_ab_group K), g' ∘g ab_qg_map K ~ ab_qg_map K) ), from quotient_group_functor_contr (λ a, (H2 a) ∘ (H1 a)), -- have KK_path : ⟨g, h⟩ = ⟨id, λ a, refl (ab_qg_map K a)⟩, from eq_of_is_contr ⟨g, h⟩ ⟨id, λ a, refl (ab_qg_map K a)⟩, repeat exact sorry end /- definition quotient_group_iso_contr {K L : property A} [is_subgroup A K] [is_subgroup A L] (H1 : Π (a : A), K a → L a) (H2 : Π (a : A), L a → K a) : is_contr (Σ (g : quotient_ab_group K ≃g quotient_ab_group L), g ∘g ab_qg_map K ~ ab_qg_map L) := begin refine @is_trunc_equiv_closed (Σ(gh : Σ (g : quotient_ab_group K →g quotient_ab_group L), g ∘g ab_qg_map K ~ ab_qg_map L), is_equiv (group_fun (pr1 gh))) (Σ (g : quotient_ab_group K ≃g quotient_ab_group L), g ∘g ab_qg_map K ~ ab_qg_map L) -2 _ (quotient_group_iso_contr_aux H1 H2), exact calc (Σ gh, is_equiv (group_fun gh.1)) ≃ Σ (g : quotient_ab_group K →g quotient_ab_group L) (h : g ∘g ab_qg_map K ~ ab_qg_map L), is_equiv (group_fun g) : by exact (sigma_assoc_equiv (λ gh, is_equiv (group_fun gh.1)))⁻¹ ... ≃ (Σ (g : quotient_ab_group K ≃g quotient_ab_group L), g ∘g ab_qg_map K ~ ab_qg_map L) : _ end -/ end quotient_group_iso definition quotient_group_functor [constructor] (φ : G →g G') (h : Πg, g ∈ N → φ g ∈ N') : quotient_group N →g quotient_group N' := begin apply quotient_group_elim (qg_map N' ∘g φ), intro g Ng, esimp, refine qg_map_eq_one (φ g) (h g Ng) end ------------------------------------------------ -- FIRST ISOMORPHISM THEOREM ------------------------------------------------ definition kernel_quotient_extension {A B : AbGroup} (f : A →g B) : quotient_ab_group (kernel f) →g B := begin unfold quotient_ab_group, fapply @quotient_group_elim A B _ (@is_normal_subgroup_ab _ (kernel f) _) f, intro a, intro p, exact p end definition kernel_quotient_extension_triangle {A B : AbGroup} (f : A →g B) : kernel_quotient_extension f ∘ ab_qg_map (kernel f) ~ f := begin intro a, apply @quotient_group_compute _ _ _ (@is_normal_subgroup_ab _ (kernel f) _) end definition is_embedding_kernel_quotient_extension {A B : AbGroup} (f : A →g B) : is_embedding (kernel_quotient_extension f) := begin fapply is_embedding_of_is_mul_hom, intro x, note H := is_surjective_ab_qg_map (kernel f) x, induction H, induction p, intro q, apply @qg_map_eq_one _ _ (@is_normal_subgroup_ab _ (kernel f) _), refine _ ⬝ q, symmetry, rexact kernel_quotient_extension_triangle f a end definition ab_group_quotient_homomorphism (A B : AbGroup)(K : property A)(L : property B) [is_subgroup A K] [is_subgroup B L] (f : A →g B) (p : Π(a:A), a ∈ K → f a ∈ L) : quotient_ab_group K →g quotient_ab_group L := begin fapply @quotient_group_elim, exact (ab_qg_map L) ∘g f, intro a, intro k, exact @ab_qg_map_eq_one B L _ (f a) (p a k), end definition ab_group_kernel_factor {A B C: AbGroup} (f : A →g B)(g : A →g C){i : C →g B}(H : f = i ∘g g ) : kernel g ⊆ kernel f := begin intro a, intro p, exact calc f a = i (g a) : homotopy_of_eq (ap group_fun H) a ... = i 1 : ap i p ... = 1 : respect_one i end definition ab_group_triv_kernel_factor {A B C: AbGroup} (f : A →g B)(g : A →g C){i : C →g B}(H : f = i ∘g g ) : kernel f ⊆ '{1} → kernel g ⊆ '{1} := λ p, subproperty.trans (ab_group_kernel_factor f g H) p definition is_embedding_of_kernel_subproperty_one {A B : AbGroup} (f : A →g B) : kernel f ⊆ '{1} → is_embedding f := λ p, is_embedding_of_is_mul_hom _ (take x, assume h : f x = 1, show x = 1, from eq_of_mem_singleton (p _ h)) definition kernel_subproperty_one {A B : AbGroup} (f : A →g B) : is_embedding f → kernel f ⊆ '{1} := λ h x hx, have x = 1, from eq_one_of_is_mul_hom hx, show x ∈ '{1}, from mem_singleton_of_eq this definition ab_group_kernel_equivalent {A B : AbGroup} (C : AbGroup) (f : A →g B)(g : A →g C)(i : C →g B)(H : f = i ∘g g )(K : is_embedding i) : Π a:A, a ∈ kernel g ↔ a ∈ kernel f := exteq_of_subproperty_of_subproperty (show kernel g ⊆ kernel f, from ab_group_kernel_factor f g H) (show kernel f ⊆ kernel g, from take a, suppose f a = 1, have i (g a) = i 1, from calc i (g a) = f a : (homotopy_of_eq (ap group_fun H) a)⁻¹ ... = 1 : this ... = i 1 : (respect_one i)⁻¹, is_injective_of_is_embedding this) definition ab_group_kernel_image_lift (A B : AbGroup) (f : A →g B) : Π a : A, a ∈ kernel (image_lift f) ↔ a ∈ kernel f := begin fapply ab_group_kernel_equivalent (ab_Image f) (f) (image_lift(f)) (image_incl(f)), exact image_factor f, exact is_embedding_of_is_injective (image_incl_injective(f)), end definition ab_group_kernel_quotient_to_image {A B : AbGroup} (f : A →g B) : quotient_ab_group (kernel f) →g ab_Image (f) := begin fapply quotient_ab_group_elim (image_lift f), intro a, intro p, apply iff.mpr (ab_group_kernel_image_lift _ _ f a) p end definition ab_group_kernel_quotient_to_image_domain_triangle {A B : AbGroup} (f : A →g B) : ab_group_kernel_quotient_to_image (f) ∘g ab_qg_map (kernel f) ~ image_lift(f) := begin intros a, esimp, end definition ab_group_kernel_quotient_to_image_codomain_triangle {A B : AbGroup} (f : A →g B) : image_incl f ∘g ab_group_kernel_quotient_to_image f ~ kernel_quotient_extension f := begin intro x, induction x, reflexivity, fapply is_prop.elimo end definition is_surjective_kernel_quotient_to_image {A B : AbGroup} (f : A →g B) : is_surjective (ab_group_kernel_quotient_to_image f) := begin fapply is_surjective_factor (group_fun (ab_qg_map (kernel f))), exact image_lift f, apply @quotient_group_compute _ _ _ (@is_normal_subgroup_ab _ (kernel f) _), exact is_surjective_image_lift f end definition is_embedding_kernel_quotient_to_image {A B : AbGroup} (f : A →g B) : is_embedding (ab_group_kernel_quotient_to_image f) := begin fapply is_embedding_factor (ab_group_kernel_quotient_to_image f) (image_incl f) (kernel_quotient_extension f), exact ab_group_kernel_quotient_to_image_codomain_triangle f, exact is_embedding_kernel_quotient_extension f end definition ab_group_first_iso_thm {A B : AbGroup} (f : A →g B) : quotient_ab_group (kernel f) ≃g ab_Image f := begin fapply isomorphism.mk, exact ab_group_kernel_quotient_to_image f, fapply is_equiv_of_is_surjective_of_is_embedding, exact is_embedding_kernel_quotient_to_image f, exact is_surjective_kernel_quotient_to_image f end definition codomain_surjection_is_quotient {A B : AbGroup} (f : A →g B)( H : is_surjective f) : quotient_ab_group (kernel f) ≃g B := begin exact (ab_group_first_iso_thm f) ⬝g (iso_surjection_ab_image_incl f H) end definition codomain_surjection_is_quotient_triangle {A B : AbGroup} (f : A →g B)( H : is_surjective f) : codomain_surjection_is_quotient (f)(H) ∘g ab_qg_map (kernel f) ~ f := begin intro a, esimp end -- print iff.mpr /- set generating normal subgroup -/ section parameters {A₁ : AbGroup} (S : A₁ → Prop) variable {A₂ : AbGroup} inductive generating_relation' : A₁ → Type := | rincl : Π{g}, S g → generating_relation' g | rmul : Π{g h}, generating_relation' g → generating_relation' h → generating_relation' (g * h) | rinv : Π{g}, generating_relation' g → generating_relation' g⁻¹ | rone : generating_relation' 1 open generating_relation' definition generating_relation (g : A₁) : Prop := ∥ generating_relation' g ∥ local abbreviation R := generating_relation definition gr_one : R 1 := tr (rone S) definition gr_inv (g : A₁) : R g → R g⁻¹ := trunc_functor -1 rinv definition gr_mul (g h : A₁) : R g → R h → R (g * h) := trunc_functor2 rmul definition normal_generating_relation [instance] : is_subgroup A₁ generating_relation := ⦃ is_subgroup, one_mem := gr_one, inv_mem := gr_inv, mul_mem := gr_mul⦄ parameter (A₁) definition quotient_ab_group_gen : AbGroup := quotient_ab_group generating_relation definition gqg_map [constructor] : A₁ →g quotient_ab_group_gen := ab_qg_map _ parameter {A₁} definition gqg_eq_of_rel {g h : A₁} (H : S (g * h⁻¹)) : gqg_map g = gqg_map h := eq_of_rel (tr (rincl H)) -- this one might work if the previous one doesn't (maybe make this the default one?) definition gqg_eq_of_rel' {g h : A₁} (H : S (g * h⁻¹)) : class_of g = class_of h :> quotient_ab_group_gen := gqg_eq_of_rel H definition gqg_elim [constructor] (f : A₁ →g A₂) (H : Π⦃g⦄, S g → f g = 1) : quotient_ab_group_gen →g A₂ := begin apply quotient_ab_group_elim f, intro g r, induction r with r, induction r with g s g h r r' IH1 IH2 g r IH, { exact H s }, { exact !respect_mul ⬝ ap011 mul IH1 IH2 ⬝ !one_mul }, { exact !respect_inv ⬝ ap inv IH ⬝ !one_inv }, { apply respect_one } end definition gqg_elim_compute (f : A₁ →g A₂) (H : Π⦃g⦄, S g → f g = 1) : gqg_elim f H ∘ gqg_map ~ f := begin intro g, reflexivity end definition gqg_elim_unique (f : A₁ →g A₂) (H : Π⦃g⦄, S g → f g = 1) (k : quotient_ab_group_gen →g A₂) : ( k ∘g gqg_map ~ f ) → k ~ gqg_elim f H := !ab_gelim_unique end end group namespace group variables {G H K : Group} {R : property G} [is_normal_subgroup G R] {S : property H} [is_normal_subgroup H S] {T : property K} [is_normal_subgroup K T] theorem quotient_group_functor_compose (ψ : H →g K) (φ : G →g H) (hψ : Πg, g ∈ S → ψ g ∈ T) (hφ : Πg, g ∈ R → φ g ∈ S) : quotient_group_functor ψ hψ ∘g quotient_group_functor φ hφ ~ quotient_group_functor (ψ ∘g φ) (λg, proof hψ (φ g) qed ∘ hφ g) := begin intro g, induction g using set_quotient.rec_prop with g hg, reflexivity end definition quotient_group_functor_gid : quotient_group_functor (gid G) (λg, id) ~ gid (quotient_group R) := begin intro g, induction g using set_quotient.rec_prop with g hg, reflexivity end definition quotient_group_functor_homotopy {ψ φ : G →g H} (hψ : Πg, R g → S (ψ g)) (hφ : Πg, g ∈ R → φ g ∈ S) (p : φ ~ ψ) : quotient_group_functor φ hφ ~ quotient_group_functor ψ hψ := begin intro g, induction g using set_quotient.rec_prop with g hg, exact ap set_quotient.class_of (p g) end end group namespace group variables {G H K : AbGroup} {R : property G} [is_subgroup G R] {S : property H} [is_subgroup H S] {T : property K} [is_subgroup K T] definition quotient_ab_group_functor [constructor] (φ : G →g H) (h : Πg, g ∈ R → φ g ∈ S) : quotient_ab_group R →g quotient_ab_group S := @quotient_group_functor G H R (is_normal_subgroup_ab _) S (is_normal_subgroup_ab _) φ h definition quotient_ab_group_functor_mul (ψ φ : G →g H) (hψ : Πg, g ∈ R → ψ g ∈ S) (hφ : Πg, g ∈ R → φ g ∈ S) : homomorphism_mul (quotient_ab_group_functor ψ hψ) (quotient_ab_group_functor φ hφ) ~ quotient_ab_group_functor (homomorphism_mul ψ φ) (λg hg, is_subgroup.mul_mem (hψ g hg) (hφ g hg)) := begin intro g, induction g using set_quotient.rec_prop with g hg, reflexivity end theorem quotient_ab_group_functor_compose (ψ : H →g K) (φ : G →g H) (hψ : Πg, g ∈ S → ψ g ∈ T) (hφ : Πg, g ∈ R → φ g ∈ S) : quotient_ab_group_functor ψ hψ ∘g quotient_ab_group_functor φ hφ ~ quotient_ab_group_functor (ψ ∘g φ) (λg, proof hψ (φ g) qed ∘ hφ g) := @quotient_group_functor_compose G H K R _ S _ T _ ψ φ hψ hφ definition quotient_ab_group_functor_gid : quotient_ab_group_functor (gid G) (λg, id) ~ gid (quotient_ab_group R) := @quotient_group_functor_gid G R _ definition quotient_ab_group_functor_homotopy {ψ φ : G →g H} (hψ : Πg, R g → S (ψ g)) (hφ : Πg, g ∈ R → φ g ∈ S) (p : φ ~ ψ) : quotient_ab_group_functor φ hφ ~ quotient_ab_group_functor ψ hψ := @quotient_group_functor_homotopy G H R _ S _ ψ φ hψ hφ p end group