-- Authors: Floris van Doorn import homotopy.EM algebra.category.functor.equivalence types.pointed2 ..pointed_pi ..pointed ..move_to_lib .susp ..algebra.exactness ..univalent_subcategory open eq equiv is_equiv algebra group nat pointed EM.ops is_trunc trunc susp function is_conn nat /- TODO: try to fix the compilation time of this file -/ namespace EM definition EMadd1_functor_succ [unfold_full] {G H : AbGroup} (φ : G →g H) (n : ℕ) : EMadd1_functor φ (succ n) ~* ptrunc_functor (n+2) (susp_functor (EMadd1_functor φ n)) := by reflexivity definition EM1_functor_gid (G : Group) : EM1_functor (gid G) ~* !pid := begin fapply phomotopy.mk, { intro x, induction x, { reflexivity }, { apply eq_pathover_id_right, apply hdeg_square, apply elim_pth, }, { apply @is_prop.elim, apply is_trunc_pathover }}, { reflexivity }, end definition EMadd1_functor_gid (G : AbGroup) (n : ℕ) : EMadd1_functor (gid G) n ~* !pid := begin induction n with n p, { apply EM1_functor_gid }, { refine !EMadd1_functor_succ ⬝* _, refine ptrunc_functor_phomotopy _ (susp_functor_phomotopy p ⬝* !susp_functor_pid) ⬝* _, apply ptrunc_functor_pid } end definition EM_functor_gid (G : AbGroup) (n : ℕ) : EM_functor (gid G) n ~* !pid := begin cases n with n, { apply pmap_of_homomorphism_gid }, { apply EMadd1_functor_gid } end definition EM1_functor_gcompose {G H K : Group} (ψ : H →g K) (φ : G →g H) : EM1_functor (ψ ∘g φ) ~* EM1_functor ψ ∘* EM1_functor φ := begin fapply phomotopy.mk, { intro x, induction x, { reflexivity }, { apply eq_pathover, apply hdeg_square, esimp, refine !elim_pth ⬝ _ ⬝ (ap_compose (EM1_functor ψ) _ _)⁻¹, refine _ ⬝ ap02 _ !elim_pth⁻¹, exact !elim_pth⁻¹ }, { apply @is_prop.elim, apply is_trunc_pathover }}, { reflexivity }, end definition EMadd1_functor_gcompose {G H K : AbGroup} (ψ : H →g K) (φ : G →g H) (n : ℕ) : EMadd1_functor (ψ ∘g φ) n ~* EMadd1_functor ψ n ∘* EMadd1_functor φ n := begin induction n with n p, { apply EM1_functor_gcompose }, { refine !EMadd1_functor_succ ⬝* _, refine ptrunc_functor_phomotopy _ (susp_functor_phomotopy p ⬝* !susp_functor_pcompose) ⬝* _, apply ptrunc_functor_pcompose } end definition EM_functor_gcompose {G H K : AbGroup} (ψ : H →g K) (φ : G →g H) (n : ℕ) : EM_functor (ψ ∘g φ) n ~* EM_functor ψ n ∘* EM_functor φ n := begin cases n with n, { apply pmap_of_homomorphism_gcompose }, { apply EMadd1_functor_gcompose } end definition EM1_functor_phomotopy {G H : Group} {φ ψ : G →g H} (p : φ ~ ψ) : EM1_functor φ ~* EM1_functor ψ := begin fapply phomotopy.mk, { intro x, induction x, { reflexivity }, { apply eq_pathover, apply hdeg_square, esimp, refine !elim_pth ⬝ _ ⬝ !elim_pth⁻¹, exact ap pth (p g) }, { apply @is_prop.elim, apply is_trunc_pathover }}, { reflexivity }, end definition EMadd1_functor_phomotopy {G H : AbGroup} {φ ψ : G →g H} (p : φ ~ ψ) (n : ℕ) : EMadd1_functor φ n ~* EMadd1_functor ψ n := begin induction n with n q, { exact EM1_functor_phomotopy p }, { exact ptrunc_functor_phomotopy _ (susp_functor_phomotopy q) } end definition EM_functor_phomotopy {G H : AbGroup} {φ ψ : G →g H} (p : φ ~ ψ) (n : ℕ) : EM_functor φ n ~* EM_functor ψ n := begin cases n with n, { exact pmap_of_homomorphism_phomotopy p }, { exact EMadd1_functor_phomotopy p n } end definition EM_equiv_EM [constructor] {G H : AbGroup} (φ : G ≃g H) (n : ℕ) : K G n ≃* K H n := begin fapply pequiv.MK', { exact EM_functor φ n }, { exact EM_functor φ⁻¹ᵍ n }, { intro x, refine (EM_functor_gcompose φ⁻¹ᵍ φ n)⁻¹* x ⬝ _, refine _ ⬝ EM_functor_gid G n x, refine EM_functor_phomotopy _ n x, rexact left_inv φ }, { intro x, refine (EM_functor_gcompose φ φ⁻¹ᵍ n)⁻¹* x ⬝ _, refine _ ⬝ EM_functor_gid H n x, refine EM_functor_phomotopy _ n x, rexact right_inv φ } end definition is_equiv_EM_functor [constructor] {G H : AbGroup} (φ : G →g H) [H2 : is_equiv φ] (n : ℕ) : is_equiv (EM_functor φ n) := to_is_equiv (EM_equiv_EM (isomorphism.mk φ H2) n) definition fundamental_group_EM1' (G : Group) : G ≃g π₁ (EM1 G) := (fundamental_group_EM1 G)⁻¹ᵍ definition ghomotopy_group_EMadd1' (G : AbGroup) (n : ℕ) : G ≃g πg[n+1] (EMadd1 G n) := begin change G ≃g π₁ (Ω[n] (EMadd1 G n)), refine _ ⬝g homotopy_group_isomorphism_of_pequiv 0 (loopn_EMadd1_pequiv_EM1 G n), apply fundamental_group_EM1' end definition homotopy_group_functor_EM1_functor {G H : Group} (φ : G →g H) : π→g[1] (EM1_functor φ) ∘ fundamental_group_EM1' G ~ fundamental_group_EM1' H ∘ φ := begin intro g, apply ap tr, exact !idp_con ⬝ !elim_pth, end section definition ghomotopy_group_EMadd1'_0 (G : AbGroup) : ghomotopy_group_EMadd1' G 0 ~ fundamental_group_EM1' G := begin refine _ ⬝hty id_compose _, unfold [ghomotopy_group_EMadd1'], apply hwhisker_right (fundamental_group_EM1' G), refine _ ⬝hty trunc_functor_id _ _, exact trunc_functor_homotopy _ ap1_pid, end definition loopn_EMadd1_pequiv_EM1_succ (G : AbGroup) (n : ℕ) : loopn_EMadd1_pequiv_EM1 G (succ n) ~* (loopn_succ_in (EMadd1 G (succ n)) n)⁻¹ᵉ* ∘* Ω→[n] (loop_EMadd1 G n) ∘* loopn_EMadd1_pequiv_EM1 G n := by reflexivity -- definition is_trunc_EMadd1' [instance] (G : AbGroup) (n : ℕ) : is_trunc (succ n) (EMadd1 G n) := -- is_trunc_EMadd1 G n definition loop_EMadd1_succ (G : AbGroup) (n : ℕ) : loop_EMadd1 G (n+1) ~* (loop_ptrunc_pequiv (n+1+1) (susp (EMadd1 G (n+1))))⁻¹ᵉ* ∘* freudenthal_pequiv (EMadd1 G (n+1)) (add_mul_le_mul_add n 1 1) ∘* (ptrunc_pequiv (n+1+1) (EMadd1 G (n+1)))⁻¹ᵉ* := by reflexivity definition ap1_EMadd1_natural {G H : AbGroup} (φ : G →g H) (n : ℕ) : Ω→ (EMadd1_functor φ (succ n)) ∘* loop_EMadd1 G n ~* loop_EMadd1 H n ∘* EMadd1_functor φ n := begin refine pwhisker_right _ (ap1_phomotopy !EMadd1_functor_succ) ⬝* _, induction n with n IH, { refine pwhisker_left _ !hopf.to_pmap_delooping_pinv ⬝* _ ⬝* pwhisker_right _ !hopf.to_pmap_delooping_pinv⁻¹*, refine !loop_susp_unit_natural⁻¹* ⬝h* _, apply ap1_psquare, apply ptr_natural }, { refine pwhisker_left _ !loop_EMadd1_succ ⬝* _ ⬝* pwhisker_right _ !loop_EMadd1_succ⁻¹*, refine _ ⬝h* !ap1_ptrunc_functor, refine (@(ptrunc_pequiv_natural (n+1+1) _) _ _)⁻¹ʰ* ⬝h* _, refine pwhisker_left _ !to_pmap_freudenthal_pequiv ⬝* _ ⬝* pwhisker_right _ !to_pmap_freudenthal_pequiv⁻¹*, apply ptrunc_functor_psquare, exact !loop_susp_unit_natural⁻¹* } end definition apn_EMadd1_pequiv_EM1_natural {G H : AbGroup} (φ : G →g H) (n : ℕ) : Ω→[n] (EMadd1_functor φ n) ∘* loopn_EMadd1_pequiv_EM1 G n ~* loopn_EMadd1_pequiv_EM1 H n ∘* EM1_functor φ := begin induction n with n IH, { reflexivity }, { refine pwhisker_left _ !loopn_EMadd1_pequiv_EM1_succ ⬝* _, refine _ ⬝* pwhisker_right _ !loopn_EMadd1_pequiv_EM1_succ⁻¹*, refine _ ⬝h* !loopn_succ_in_inv_natural, exact IH ⬝h* (apn_psquare n !ap1_EMadd1_natural) } end definition homotopy_group_functor_EMadd1_functor {G H : AbGroup} (φ : G →g H) (n : ℕ) : π→g[n+1] (EMadd1_functor φ n) ∘ ghomotopy_group_EMadd1' G n ~ ghomotopy_group_EMadd1' H n ∘ φ := begin refine hwhisker_left _ (to_fun_isomorphism_trans _ _) ⬝hty _ ⬝hty hwhisker_right _ (to_fun_isomorphism_trans _ _)⁻¹ʰᵗʸ, refine _ ⬝htyh (homotopy_group_homomorphism_psquare 1 (apn_EMadd1_pequiv_EM1_natural φ n)), apply homotopy_group_functor_EM1_functor end definition homotopy_group_functor_EMadd1_functor' {G H : AbGroup} (φ : G →g H) (n : ℕ) : φ ∘ (ghomotopy_group_EMadd1' G n)⁻¹ᵍ ~ (ghomotopy_group_EMadd1' H n)⁻¹ᵍ ∘ π→g[n+1] (EMadd1_functor φ n) := (homotopy_group_functor_EMadd1_functor φ n)⁻¹ʰᵗʸʰ definition EM1_pmap_natural {G H : Group} {X Y : Type*} (f : X →* Y) (eX : G → Ω X) (eY : H → Ω Y) (rX : Πg h, eX (g * h) = eX g ⬝ eX h) (rY : Πg h, eY (g * h) = eY g ⬝ eY h) [H1 : is_conn 0 X] [H2 : is_trunc 1 X] [is_conn 0 Y] [is_trunc 1 Y] (φ : G →g H) (p : hsquare eX eY φ (Ω→ f)) : psquare (EM1_pmap eX rX) (EM1_pmap eY rY) (EM1_functor φ) f := begin fapply phomotopy.mk, { intro x, induction x using EM.set_rec, { exact respect_pt f }, { apply eq_pathover, refine ap_compose f _ _ ⬝ph _ ⬝hp (ap_compose (EM1_pmap eY rY) _ _)⁻¹, refine ap02 _ !elim_pth ⬝ph _ ⬝hp ap02 _ !elim_pth⁻¹, refine _ ⬝hp !elim_pth⁻¹, apply transpose, exact square_of_eq_bot (p g) }}, { exact !idp_con⁻¹ } end definition EM1_pequiv'_natural {G H : Group} {X Y : Type*} (f : X →* Y) (eX : G ≃* Ω X) (eY : H ≃* Ω Y) (rX : Πg h, eX (g * h) = eX g ⬝ eX h) (rY : Πg h, eY (g * h) = eY g ⬝ eY h) [H1 : is_conn 0 X] [H2 : is_trunc 1 X] [is_conn 0 Y] [is_trunc 1 Y] (φ : G →g H) (p : Ω→ f ∘ eX ~ eY ∘ φ) : f ∘* EM1_pequiv' eX rX ~* EM1_pequiv' eY rY ∘* EM1_functor φ := EM1_pmap_natural f eX eY rX rY φ p definition EM1_pequiv_natural {G H : Group} {X Y : Type*} (f : X →* Y) (eX : G ≃g π₁ X) (eY : H ≃g π₁ Y) [H1 : is_conn 0 X] [H2 : is_trunc 1 X] [is_conn 0 Y] [is_trunc 1 Y] (φ : G →g H) (p : π→g[1] f ∘ eX ~ eY ∘ φ) : f ∘* EM1_pequiv eX ~* EM1_pequiv eY ∘* EM1_functor φ := EM1_pequiv'_natural f _ _ _ _ φ begin assert p' : ptrunc_functor 0 (Ω→ f) ∘* pequiv_of_isomorphism eX ~* pequiv_of_isomorphism eY ∘* pmap_of_homomorphism φ, exact phomotopy_of_homotopy p, exact p' ⬝h* (ptrunc_pequiv_natural 0 (Ω→ f)), end definition EM1_pequiv_type_natural {X Y : Type*} (f : X →* Y) [H1 : is_conn 0 X] [H2 : is_trunc 1 X] [H3 : is_conn 0 Y] [H4 : is_trunc 1 Y] : f ∘* EM1_pequiv_type X ~* EM1_pequiv_type Y ∘* EM1_functor (π→g[1] f) := begin refine EM1_pequiv_natural f _ _ _ _, reflexivity end definition EM_up_natural {G H : AbGroup} (φ : G →g H) {X Y : Type*} (f : X →* Y) {n : ℕ} (eX : Ω[succ (succ n)] X ≃* G) (eY : Ω[succ (succ n)] Y ≃* H) (p : φ ∘ eX ~ eY ∘ Ω→[succ (succ n)] f) : φ ∘ EM_up eX ~ EM_up eY ∘ Ω→[succ n] (Ω→ f) := begin refine _ ⬝htyh p, exact to_homotopy (phinverse (loopn_succ_in_natural (succ n) f)⁻¹*) end definition EMadd1_pmap_natural {G H : AbGroup} {X Y : Type*} (f : X →* Y) (n : ℕ) (eX : Ω[succ n] X ≃* G) (eY : Ω[succ n] Y ≃* H) (rX : Πp q, eX (p ⬝ q) = eX p * eX q) (rY : Πp q, eY (p ⬝ q) = eY p * eY q) [H1 : is_conn n X] [H2 : is_trunc (n.+1) X] [H3 : is_conn n Y] [H4 : is_trunc (n.+1) Y] (φ : G →g H) (p : φ ∘ eX ~ eY ∘ Ω→[succ n] f) : f ∘* EMadd1_pmap n eX rX ~* EMadd1_pmap n eY rY ∘* EMadd1_functor φ n := begin revert X Y f eX eY rX rY H1 H2 H3 H4 p, induction n with n IH: intros, { apply EM1_pmap_natural, exact @hhinverse _ _ _ _ _ _ eX eY p }, { do 2 rewrite [EMadd1_pmap_succ], refine _ ⬝* pwhisker_left _ !EMadd1_functor_succ⁻¹*, refine (ptrunc_elim_pcompose ((succ n).+1) _ _)⁻¹* ⬝* _ ⬝* (ptrunc_elim_ptrunc_functor ((succ n).+1) _ _)⁻¹*, apply ptrunc_elim_phomotopy, refine _ ⬝* !susp_elim_susp_functor⁻¹*, refine _ ⬝* susp_elim_phomotopy (IH _ _ _ _ _ (is_homomorphism_EM_up eX rX) _ (@is_conn_loop _ _ H1) (@is_trunc_loop _ _ H2) _ _ (EM_up_natural φ f eX eY p)), apply susp_elim_natural } end definition EMadd1_pequiv'_natural {G H : AbGroup} {X Y : Type*} (f : X →* Y) (n : ℕ) (eX : Ω[succ n] X ≃* G) (eY : Ω[succ n] Y ≃* H) (rX : Πp q, eX (p ⬝ q) = eX p * eX q) (rY : Πp q, eY (p ⬝ q) = eY p * eY q) [H1 : is_conn n X] [H2 : is_trunc (n.+1) X] [is_conn n Y] [is_trunc (n.+1) Y] (φ : G →g H) (p : φ ∘ eX ~ eY ∘ Ω→[succ n] f) : f ∘* EMadd1_pequiv' n eX rX ~* EMadd1_pequiv' n eY rY ∘* EMadd1_functor φ n := begin rexact EMadd1_pmap_natural f n eX eY rX rY φ p end definition EMadd1_pequiv_natural_local_instance {X : Type*} (n : ℕ) [H : is_trunc (n.+1) X] : is_set (Ω[succ n] X) := @(is_set_loopn (succ n) X) H local attribute EMadd1_pequiv_natural_local_instance [instance] definition EMadd1_pequiv_natural {G H : AbGroup} {X Y : Type*} (f : X →* Y) (n : ℕ) (eX : πg[n+1] X ≃g G) (eY : πg[n+1] Y ≃g H) [H1 : is_conn n X] [H2 : is_trunc (n.+1) X] [H3 : is_conn n Y] [H4 : is_trunc (n.+1) Y] (φ : G →g H) (p : φ ∘ eX ~ eY ∘ π→g[n+1] f) : f ∘* EMadd1_pequiv n eX ~* EMadd1_pequiv n eY ∘* EMadd1_functor φ n := EMadd1_pequiv'_natural f n ((ptrunc_pequiv 0 (Ω[succ n] X))⁻¹ᵉ* ⬝e* pequiv_of_isomorphism eX) ((ptrunc_pequiv 0 (Ω[succ n] Y))⁻¹ᵉ* ⬝e* pequiv_of_isomorphism eY) _ _ φ (hhconcat (to_homotopy (phinverse (ptrunc_pequiv_natural 0 (Ω→[succ n] f)))) p) definition EMadd1_pequiv_succ_natural {G H : AbGroup} {X Y : Type*} (f : X →* Y) (n : ℕ) (eX : πag[n+2] X ≃g G) (eY : πag[n+2] Y ≃g H) [is_conn (n.+1) X] [is_trunc (n.+2) X] [is_conn (n.+1) Y] [is_trunc (n.+2) Y] (φ : G →g H) (p : φ ∘ eX ~ eY ∘ π→g[n+2] f) : f ∘* EMadd1_pequiv_succ n eX ~* EMadd1_pequiv_succ n eY ∘* EMadd1_functor φ (n+1) := @(EMadd1_pequiv_natural f (succ n) eX eY) _ _ _ _ φ p definition EMadd1_pequiv_type_natural {X Y : Type*} (f : X →* Y) (n : ℕ) [H1 : is_conn (n+1) X] [H2 : is_trunc (n+1+1) X] [H3 : is_conn (n+1) Y] [H4 : is_trunc (n+1+1) Y] : f ∘* EMadd1_pequiv_type X n ~* EMadd1_pequiv_type Y n ∘* EMadd1_functor (π→g[n+2] f) (succ n) := EMadd1_pequiv_succ_natural f n !isomorphism.refl !isomorphism.refl (π→g[n+2] f) proof λa, idp qed /- The Eilenberg-MacLane space K(G,n) with the same homotopy group as X on level n. On paper this is written K(πₙ(X), n). The problem is that for * n = 0 the expression π₀(X) is a pointed set, and K(X,0) needs X to be a pointed set * n = 1 the expression π₁(X) is a group, and K(G,1) needs G to be a group * n ≥ 2 the expression πₙ(X) is an abelian, and K(G,n) needs X to be an abelian group -/ definition EM_type (X : Type*) : ℕ → Type* | 0 := ptrunc 0 X | 1 := EM1 (π₁ X) | (n+2) := EMadd1 (πag[n+2] X) (n+1) definition EM_type_pequiv.{u} {X Y : pType.{u}} (n : ℕ) [Hn : is_succ n] (e : πg[n] Y ≃g πg[n] X) [H1 : is_conn (n.-1) X] [H2 : is_trunc n X] : EM_type Y n ≃* X := begin induction Hn with n, cases n with n, { have is_conn 0 X, from H1, have is_trunc 1 X, from H2, exact EM1_pequiv e }, { have is_conn (n+1) X, from H1, have is_trunc ((n+1).+1) X, from H2, exact EMadd1_pequiv (n+1) e⁻¹ᵍ } end -- definition EM1_functor_equiv' (X Y : Type*) [H1 : is_conn 0 X] [H2 : is_trunc 1 X] -- [H3 : is_conn 0 Y] [H4 : is_trunc 1 Y] : (X →* Y) ≃ (π₁ X →g π₁ Y) := -- begin -- fapply equiv.MK, -- { intro f, exact π→g[1] f }, -- { intro φ, exact EM1_pequiv_type Y ∘* EM1_functor φ ∘* (EM1_pequiv_type X)⁻¹ᵉ* }, -- { intro φ, apply homomorphism_eq, -- refine homotopy_group_homomorphism_pcompose _ _ _ ⬝hty _, -- refine hwhisker_left _ (homotopy_group_homomorphism_pcompose _ _ _) ⬝hty _, -- refine (hassoc _ _ _)⁻¹ʰᵗʸ ⬝hty _, exact sorry }, -- { intro f, apply eq_of_phomotopy, refine !passoc⁻¹* ⬝* _, apply pinv_right_phomotopy_of_phomotopy, -- exact sorry } -- end -- definition EMadd1_functor_equiv' (n : ℕ) (X Y : Type*) [H1 : is_conn (n+1) X] [H2 : is_trunc (n+1+1) X] -- [H3 : is_conn (n+1) Y] [H4 : is_trunc (n+1+1) Y] : (X →* Y) ≃ (πag[n+2] X →g πag[n+2] Y) := -- begin -- fapply equiv.MK, -- { intro f, exact π→g[n+2] f }, -- { intro φ, exact EMadd1_pequiv_type Y n ∘* EMadd1_functor φ (n+1) ∘* (EMadd1_pequiv_type X n)⁻¹ᵉ* }, -- { intro φ, apply homomorphism_eq, -- refine homotopy_group_homomorphism_pcompose _ _ _ ⬝hty _, -- refine hwhisker_left _ (homotopy_group_homomorphism_pcompose _ _ _) ⬝hty _, -- intro g, exact sorry }, -- { intro f, apply eq_of_phomotopy, refine !passoc⁻¹* ⬝* _, apply pinv_right_phomotopy_of_phomotopy, -- exact !EMadd1_pequiv_type_natural⁻¹* } -- end -- definition EM_functor_equiv (n : ℕ) (G H : AbGroup) : (G →g H) ≃ (EMadd1 G (n+1) →* EMadd1 H (n+1)) := -- begin -- fapply equiv.MK, -- { intro φ, exact EMadd1_functor φ (n+1) }, -- { intro f, exact ghomotopy_group_EMadd1 H (n+1) ∘g π→g[n+2] f ∘g (ghomotopy_group_EMadd1 G (n+1))⁻¹ᵍ }, -- { intro f, apply homomorphism_eq, }, -- { } -- end -- definition EMadd1_pmap {G : AbGroup} {X : Type*} (n : ℕ) -- (e : Ω[succ n] X ≃* G) -- (r : Πp q, e (p ⬝ q) = e p * e q) -- [H1 : is_conn n X] [H2 : is_trunc (n.+1) X] : EMadd1 G n →* X := -- begin -- revert X e r H1 H2, induction n with n f: intro X e r H1 H2, -- { exact EM1_pmap e⁻¹ᵉ* (equiv.inv_preserve_binary e concat mul r) }, -- rewrite [EMadd1_succ], -- exact ptrunc.elim ((succ n).+1) -- (susp.elim (f _ (EM_up e) (is_mul_hom_EM_up e r) _ _)), -- end -- definition is_set_pmap_ptruncconntype {n : ℕ₋₂} (X Y : (n.+1)-Type*[n]) : is_set (X →* Y) := -- begin -- apply is_trunc_succ_intro, -- intro f g, -- apply @(is_trunc_equiv_closed_rev -1 (pmap_eq_equiv f g)), -- apply is_prop.mk, -- exact sorry -- end end section category /- category -/ structure ptruncconntype' (n : ℕ₋₂) : Type := (A : Type*) (H1 : is_conn n A) (H2 : is_trunc (n+1) A) attribute ptruncconntype'.A [coercion] attribute ptruncconntype'.H1 ptruncconntype'.H2 [instance] definition EM1_pequiv_ptruncconntype' (X : ptruncconntype' 0) : EM1 (πg[1] X) ≃* X := @(EM1_pequiv_type X) _ (ptruncconntype'.H2 X) definition EMadd1_pequiv_ptruncconntype' {n : ℕ} (X : ptruncconntype' (n+1)) : EMadd1 (πag[n+2] X) (succ n) ≃* X := @(EMadd1_pequiv_type X n) _ (ptruncconntype'.H2 X) open trunc_index definition is_set_pmap_ptruncconntype {n : ℕ₋₂} (X Y : ptruncconntype' n) : is_set (X →* Y) := begin cases n with n, { exact _ }, cases Y with Y H1 H2, cases Y with Y y₀, exact is_trunc_pmap_of_is_conn X n -1 _ (pointed.MK Y y₀) !le.refl H2, end open category functor nat_trans definition precategory_ptruncconntype'.{u} [constructor] (n : ℕ₋₂) : precategory.{u+1 u} (ptruncconntype' n) := begin fapply precategory.mk, { exact λX Y, X →* Y }, { exact is_set_pmap_ptruncconntype }, { exact λX Y Z g f, g ∘* f }, { exact λX, pid X }, { intros, apply eq_of_phomotopy, exact !passoc⁻¹* }, { intros, apply eq_of_phomotopy, apply pid_pcompose }, { intros, apply eq_of_phomotopy, apply pcompose_pid } end definition cptruncconntype' [constructor] (n : ℕ₋₂) : Precategory := precategory.Mk (precategory_ptruncconntype' n) notation `cType*[`:95 n `]`:0 := cptruncconntype' n definition tEM1 [constructor] (G : Group) : ptruncconntype' 0 := ptruncconntype'.mk (EM1 G) _ !is_trunc_EM1 definition tEM [constructor] (G : AbGroup) (n : ℕ) : ptruncconntype' (n.-1) := ptruncconntype'.mk (EM G n) _ !is_trunc_EM definition EM1_cfunctor : Grp ⇒ cType*[0] := functor.mk (λG, tEM1 G) (λG H φ, EM1_functor φ) begin intro, fapply eq_of_phomotopy, apply EM1_functor_gid end begin intros, fapply eq_of_phomotopy, apply EM1_functor_gcompose end definition EM_cfunctor (n : ℕ) : AbGrp ⇒ cType*[n.-1] := functor.mk (λG, tEM G n) (λG H φ, EM_functor φ n) begin intro, fapply eq_of_phomotopy, apply EM_functor_gid end begin intros, fapply eq_of_phomotopy, apply EM_functor_gcompose end definition homotopy_group_cfunctor : cType*[0] ⇒ Grp := functor.mk (λX, πg[1] X) (λX Y f, π→g[1] f) begin intro, apply homomorphism_eq, exact to_homotopy !homotopy_group_functor_pid end begin intros, apply homomorphism_eq, exact to_homotopy !homotopy_group_functor_compose end definition ab_homotopy_group_cfunctor (n : ℕ) : cType*[n.+1] ⇒ AbGrp := functor.mk (λX, πag[n+2] X) (λX Y f, π→g[n+2] f) begin intro, apply homomorphism_eq, exact to_homotopy !homotopy_group_functor_pid end begin intros, apply homomorphism_eq, exact to_homotopy !homotopy_group_functor_compose end definition is_equivalence_EM1_cfunctor.{u} : is_equivalence EM1_cfunctor.{u} := begin fapply is_equivalence.mk, { exact homotopy_group_cfunctor.{u} }, { fapply natural_iso.mk, { fapply nat_trans.mk, { intro G, exact (fundamental_group_EM1' G)⁻¹ᵍ }, { intro G H φ, apply homomorphism_eq, exact hhinverse (homotopy_group_functor_EM1_functor φ) }}, { intro G, fapply iso.is_iso.mk, { exact fundamental_group_EM1' G }, { apply homomorphism_eq, exact to_right_inv (equiv_of_isomorphism (fundamental_group_EM1' G)), }, { apply homomorphism_eq, exact to_left_inv (equiv_of_isomorphism (fundamental_group_EM1' G)), }}}, { fapply natural_iso.mk, { fapply nat_trans.mk, { intro X, exact EM1_pequiv_ptruncconntype' X }, { intro X Y f, apply eq_of_phomotopy, apply EM1_pequiv_type_natural }}, { intro X, fapply iso.is_iso.mk, { exact (EM1_pequiv_ptruncconntype' X)⁻¹ᵉ* }, { apply eq_of_phomotopy, apply pleft_inv }, { apply eq_of_phomotopy, apply pright_inv }}} end definition is_equivalence_EM_cfunctor.{u} (n : ℕ) : is_equivalence (EM_cfunctor.{u} (n+2)) := begin fapply is_equivalence.mk, { exact ab_homotopy_group_cfunctor.{u} n }, { fapply natural_iso.mk, { fapply nat_trans.mk, { intro G, exact (ghomotopy_group_EMadd1' G (n+1))⁻¹ᵍ }, { intro G H φ, apply homomorphism_eq, exact homotopy_group_functor_EMadd1_functor' φ (n+1) }}, { intro G, fapply iso.is_iso.mk, { exact ghomotopy_group_EMadd1' G (n+1) }, { apply homomorphism_eq, exact to_right_inv (equiv_of_isomorphism (ghomotopy_group_EMadd1' G (n+1))), }, { apply homomorphism_eq, exact to_left_inv (equiv_of_isomorphism (ghomotopy_group_EMadd1' G (n+1))), }}}, { fapply natural_iso.mk, { fapply nat_trans.mk, { intro X, exact EMadd1_pequiv_ptruncconntype' X }, { intro X Y f, apply eq_of_phomotopy, apply EMadd1_pequiv_type_natural }}, { intro X, fapply iso.is_iso.mk, { exact (EMadd1_pequiv_ptruncconntype' X)⁻¹ᵉ* }, { apply eq_of_phomotopy, apply pleft_inv }, { apply eq_of_phomotopy, apply pright_inv }}} end definition Grp_equivalence_cptruncconntype'.{u} [constructor] : Grp.{u} ≃c cType*[0] := equivalence.mk EM1_cfunctor.{u} is_equivalence_EM1_cfunctor.{u} definition AbGrp_equivalence_cptruncconntype'.{u} [constructor] (n : ℕ) : AbGrp.{u} ≃c cType*[n.+1] := equivalence.mk (EM_cfunctor.{u} (n+2)) (is_equivalence_EM_cfunctor.{u} n) end category definition pequiv_EMadd1_of_loopn_pequiv_EM1 {G : AbGroup} {X : Type*} (n : ℕ) (e : Ω[n] X ≃* EM1 G) [H1 : is_conn n X] : X ≃* EMadd1 G n := begin symmetry, apply EMadd1_pequiv, refine isomorphism_of_eq (ap (λx, πg[x+1] X) !zero_add⁻¹) ⬝g homotopy_group_add X 0 n ⬝g _ ⬝g !fundamental_group_EM1, exact homotopy_group_isomorphism_of_pequiv 0 e, refine is_trunc_of_is_trunc_loopn n 1 X _ _, apply is_trunc_equiv_closed_rev 1 e end definition EM1_pequiv_EM1 {G H : Group} (φ : G ≃g H) : EM1 G ≃* EM1 H := pequiv.MK (EM1_functor φ) (EM1_functor φ⁻¹ᵍ) abstract (EM1_functor_gcompose φ⁻¹ᵍ φ)⁻¹* ⬝* EM1_functor_phomotopy proof left_inv φ qed ⬝* EM1_functor_gid G end abstract (EM1_functor_gcompose φ φ⁻¹ᵍ)⁻¹* ⬝* EM1_functor_phomotopy proof right_inv φ qed ⬝* EM1_functor_gid H end definition is_contr_EM1 {G : Group} (H : is_contr G) : is_contr (EM1 G) := is_contr_of_is_conn_of_is_trunc (is_trunc_succ_succ_of_is_trunc_loop _ _ (is_trunc_equiv_closed _ !loop_EM1) _) !is_conn_EM1 definition is_contr_EMadd1 (n : ℕ) {G : AbGroup} (H : is_contr G) : is_contr (EMadd1 G n) := begin induction n with n IH, { exact is_contr_EM1 H }, { have is_contr (ptrunc (n+2) (susp (EMadd1 G n))), from _, exact this } end definition is_contr_EM (n : ℕ) {G : AbGroup} (H : is_contr G) : is_contr (K G n) := begin cases n with n, { exact H }, { exact is_contr_EMadd1 n H } end definition EMadd1_pequiv_EMadd1 (n : ℕ) {G H : AbGroup} (φ : G ≃g H) : EMadd1 G n ≃* EMadd1 H n := pequiv.MK (EMadd1_functor φ n) (EMadd1_functor φ⁻¹ᵍ n) abstract (EMadd1_functor_gcompose φ⁻¹ᵍ φ n)⁻¹* ⬝* EMadd1_functor_phomotopy proof left_inv φ qed n ⬝* EMadd1_functor_gid G n end abstract (EMadd1_functor_gcompose φ φ⁻¹ᵍ n)⁻¹* ⬝* EMadd1_functor_phomotopy proof right_inv φ qed n ⬝* EMadd1_functor_gid H n end definition EM_pequiv_EM (n : ℕ) {G H : AbGroup} (φ : G ≃g H) : K G n ≃* K H n := begin cases n with n, { exact pequiv_of_isomorphism φ }, { exact EMadd1_pequiv_EMadd1 n φ } end definition ppi_EMadd1 {X : Type*} (Y : X → Type*) (n : ℕ) : (Π*(x : X), EMadd1 (πag[n+2] (Y x)) (n+1)) ≃* EMadd1 (πag[n+2] (Π*(x : X), Y x)) (n+1) := begin exact sorry end --EM_spectrum (πₛ[s] (spi X Y)) k ≃* spi X (λx, EM_spectrum (πₛ[s] (Y x))) k /- fiber of EM_functor -/ open fiber definition is_trunc_fiber_EM1_functor {G H : Group} (φ : G →g H) : is_trunc 1 (pfiber (EM1_functor φ)) := !is_trunc_fiber definition is_conn_fiber_EM1_functor {G H : Group} (φ : G →g H) : is_conn -1 (pfiber (EM1_functor φ)) := begin apply is_conn_fiber end definition is_trunc_fiber_EMadd1_functor {G H : AbGroup} (φ : G →g H) (n : ℕ) : is_trunc (n+1) (pfiber (EMadd1_functor φ n)) := begin apply is_trunc_fiber end definition is_conn_fiber_EMadd1_functor {G H : AbGroup} (φ : G →g H) (n : ℕ) : is_conn (n.-1) (pfiber (EMadd1_functor φ n)) := begin apply is_conn_fiber, apply is_conn_of_is_conn_succ, apply is_conn_EMadd1, apply is_conn_EMadd1 end definition is_trunc_fiber_EM_functor {G H : AbGroup} (φ : G →g H) (n : ℕ) : is_trunc n (pfiber (EM_functor φ n)) := begin apply is_trunc_fiber end definition is_conn_fiber_EM_functor {G H : AbGroup} (φ : G →g H) (n : ℕ) : is_conn (n.-2) (pfiber (EM_functor φ n)) := begin apply is_conn_fiber, apply is_conn_of_is_conn_succ end section open chain_complex prod fin /- TODO: other cases -/ definition LES_isomorphism_kernel_of_trivial.{u} {X Y : pType.{u}} (f : X →* Y) (n : ℕ) [H : is_succ n] (H1 : is_contr (πg[n+1] Y)) : πg[n] (pfiber f) ≃g Kernel (π→g[n] f) := begin induction H with n, have H2 : is_exact (π→g[n+1] (ppoint f)) (π→g[n+1] f), from is_exact_of_is_exact_at (is_exact_LES_of_homotopy_groups f (n+1, 0)), have H3 : is_exact (π→g[n+1] (boundary_map f) ∘g ghomotopy_group_succ_in Y n) (π→g[n+1] (ppoint f)), from is_exact_of_is_exact_at (is_exact_LES_of_homotopy_groups f (n+1, 1)), exact isomorphism_kernel_of_is_exact H3 H2 H1 end end open group algebra is_trunc definition homotopy_group_fiber_EM1_functor.{u} {G H : Group.{u}} (φ : G →g H) : π₁ (pfiber (EM1_functor φ)) ≃g Kernel φ := have H1 : is_trunc 1 (EM1 H), from sorry, have H2 : 1 <[ℕ] 1 + 1, from sorry, LES_isomorphism_kernel_of_trivial (EM1_functor φ) 1 (@trivial_homotopy_group_of_is_trunc _ 1 2 H1 H2) ⬝g sorry definition homotopy_group_fiber_EMadd1_functor {G H : AbGroup} (φ : G →g H) (n : ℕ) : πg[n+1] (pfiber (EMadd1_functor φ n)) ≃g Kernel φ := sorry /- TODO: move-/ definition cokernel {G H : AbGroup} (φ : G →g H) : AbGroup := quotient_ab_group (image φ) definition trunc_fiber_EM1_functor {G H : Group} (φ : G →g H) : ptrunc 0 (pfiber (EM1_functor φ)) ≃* sorry := sorry end EM