import homotopy.susp types.pointed2 open susp eq pointed function is_equiv lift equiv namespace susp variables {X X' Y Y' Z : Type*} definition susp_functor_pconst_homotopy [unfold 3] {X Y : Type*} (x : psusp X) : psusp_functor (pconst X Y) x = pt := begin induction x, { reflexivity }, { exact (merid pt)⁻¹ }, { apply eq_pathover, refine !elim_merid ⬝ph _ ⬝hp !ap_constant⁻¹, exact square_of_eq !con.right_inv⁻¹ } end definition susp_functor_pconst [constructor] (X Y : Type*) : psusp_functor (pconst X Y) ~* pconst (psusp X) (psusp Y) := begin fapply phomotopy.mk, { exact susp_functor_pconst_homotopy }, { reflexivity } end definition psusp_pfunctor [constructor] (X Y : Type*) : ppmap X Y →* ppmap (psusp X) (psusp Y) := pmap.mk psusp_functor (eq_of_phomotopy !susp_functor_pconst) definition psusp_pelim [constructor] (X Y : Type*) : ppmap X (Ω Y) →* ppmap (psusp X) Y := ppcompose_left (loop_psusp_counit Y) ∘* psusp_pfunctor X (Ω Y) definition loop_psusp_pintro [constructor] (X Y : Type*) : ppmap (psusp X) Y →* ppmap X (Ω Y) := ppcompose_right (loop_psusp_unit X) ∘* pap1 (psusp X) Y definition loop_psusp_pintro_natural_left (f : X' →* X) : psquare (loop_psusp_pintro X Y) (loop_psusp_pintro X' Y) (ppcompose_right (psusp_functor f)) (ppcompose_right f) := !pap1_natural_left ⬝h* ppcompose_right_psquare (loop_psusp_unit_natural f)⁻¹* definition loop_psusp_pintro_natural_right (f : Y →* Y') : psquare (loop_psusp_pintro X Y) (loop_psusp_pintro X Y') (ppcompose_left f) (ppcompose_left (Ω→ f)) := !pap1_natural_right ⬝h* !ppcompose_left_ppcompose_right⁻¹* definition is_equiv_loop_psusp_pintro [constructor] (X Y : Type*) : is_equiv (loop_psusp_pintro X Y) := begin fapply adjointify, { exact psusp_pelim X Y }, { intro g, apply eq_of_phomotopy, exact psusp_adjoint_loop_right_inv g }, { intro f, apply eq_of_phomotopy, exact psusp_adjoint_loop_left_inv f } end definition psusp_adjoint_loop' [constructor] (X Y : Type*) : ppmap (psusp X) Y ≃* ppmap X (Ω Y) := pequiv_of_pmap (loop_psusp_pintro X Y) (is_equiv_loop_psusp_pintro X Y) definition psusp_adjoint_loop_natural_right (f : Y →* Y') : psquare (psusp_adjoint_loop' X Y) (psusp_adjoint_loop' X Y') (ppcompose_left f) (ppcompose_left (Ω→ f)) := loop_psusp_pintro_natural_right f definition psusp_adjoint_loop_natural_left (f : X' →* X) : psquare (psusp_adjoint_loop' X Y) (psusp_adjoint_loop' X' Y) (ppcompose_right (psusp_functor f)) (ppcompose_right f) := loop_psusp_pintro_natural_left f definition iterate_psusp_iterate_psusp_rev (n m : ℕ) (A : Type*) : iterate_psusp n (iterate_psusp m A) ≃* iterate_psusp (m + n) A := begin induction n with n e, { reflexivity }, { exact psusp_pequiv e } end definition iterate_psusp_pequiv [constructor] (n : ℕ) {X Y : Type*} (f : X ≃* Y) : iterate_psusp n X ≃* iterate_psusp n Y := begin induction n with n e, { exact f }, { exact psusp_pequiv e } end open algebra nat definition iterate_psusp_iterate_psusp (n m : ℕ) (A : Type*) : iterate_psusp n (iterate_psusp m A) ≃* iterate_psusp (n + m) A := iterate_psusp_iterate_psusp_rev n m A ⬝e* pequiv_of_eq (ap (λk, iterate_psusp k A) (add.comm m n)) definition plift_psusp.{u v} : Π(A : Type*), plift.{u v} (psusp A) ≃* psusp (plift.{u v} A) := begin intro A, calc plift.{u v} (psusp A) ≃* psusp A : by exact (pequiv_plift (psusp A))⁻¹ᵉ* ... ≃* psusp (plift.{u v} A) : by exact psusp_pequiv (pequiv_plift.{u v} A) end end susp