/- A computation of the cohomology groups of K(ℤ,2) using the Serre spectral sequence Author: Floris van Doorn-/ import .serre open eq spectrum EM EM.ops int pointed cohomology left_module algebra group fiber is_equiv equiv prod is_trunc function exact_couple namespace temp definition uH0_circle : uH^0[circle] ≃g gℤ := sorry definition uH1_circle : uH^1[circle] ≃g gℤ := sorry definition uH_circle_of_ge (n : ℤ) (h : n ≥ 2) : uH^n[circle] ≃g trivial_ab_group := sorry definition f : unit → K agℤ 2 := λx, pt definition fserre : (λp q, uoH^p[K agℤ 2, H^q[circle₊]]) ⟹ᵍ (λn, H^n[unit₊]) := proof convergent_exact_couple_g_isomorphism (serre_convergence_map_of_is_conn pt f (EM_spectrum agℤ) 0 (is_strunc_EM_spectrum agℤ) (is_conn_EM agℤ 2)) begin intro n s, apply unreduced_ordinary_cohomology_isomorphism_right, apply unreduced_cohomology_isomorphism, symmetry, refine !fiber_const_equiv ⬝e _, refine loop_EM _ 1 ⬝e _, exact EM_pequiv_circle end begin intro n, reflexivity end qed exit -- this file needs to be updated after reindexing of spectral sequences section local notation `X` := converges_to.X fserre local notation `E∞` := convergence_theorem.Einf (converges_to.HH fserre) local notation `E∞d` := convergence_theorem.Einfdiag (converges_to.HH fserre) local notation `E` := exact_couple.E X definition fbuilt (n : ℤ) : is_built_from (LeftModule_int_of_AbGroup (H^-n[unit₊])) (E∞d (n, 0)) := is_built_from_of_converges_to fserre n definition fEinf0 : E∞ (0, 0) ≃lm LeftModule_int_of_AbGroup agℤ := isomorphism_zero_of_is_built_from (fbuilt 0) (by reflexivity) ⬝lm lm_iso_int.mk (cohomology_change_int _ _ neg_zero ⬝g cohomology_isomorphism pbool_pequiv_add_point_unit _ _ ⬝g ordinary_cohomology_pbool _) definition fEinfd (n : ℤ) (m : ℕ) (p : n ≠ 0) : is_contr (E∞d (n, 0) m) := have p' : -n ≠ 0, from λH, p (eq_zero_of_neg_eq_zero H), is_contr_quotients (fbuilt n) (@(is_trunc_equiv_closed_rev -2 (group.equiv_of_isomorphism (cohomology_isomorphism pbool_pequiv_add_point_unit _ _))) (EM_dimension' _ _ p')) _ definition fEinf (n : ℤ) (m : ℕ) (p : n ≠ 0) : is_contr (E∞ (n, -m)) := transport (is_contr ∘ E∞) begin induction m with m q, reflexivity, refine ap (deg (exact_couple.i X)) q ⬝ _, exact prod_eq idp (neg_add m (1 : ℤ))⁻¹ᵖ end (fEinfd n m p) definition is_contr_fD (n s : ℤ) (p : s > 0) : is_contr (E (n, s)) := have is_contr H^-s[circle₊], from is_contr_ordinary_cohomology_of_neg _ _ (neg_neg_of_pos p), have is_contr (uoH^-(n-s)[K agℤ 2, H^-s[circle₊]]), from is_contr_unreduced_ordinary_cohomology _ _ _ _, @(is_contr_equiv_closed (left_module.equiv_of_isomorphism (converges_to.e fserre (n, s))⁻¹ˡᵐ)) this definition is_contr_fD2 (n s : ℤ) (p : n > s) : is_contr (E (n, s)) := have -(n-s) < 0, from neg_neg_of_pos (sub_pos_of_lt p), @(is_contr_equiv_closed (left_module.equiv_of_isomorphism (converges_to.e fserre (n, s))⁻¹ˡᵐ)) (is_contr_ordinary_cohomology_of_neg _ _ this) definition is_contr_fD3 (n s : ℤ) (p : s ≤ - 2) : is_contr (E (n, s)) := have -s ≥ 2, from sorry, --from neg_neg_of_pos (sub_pos_of_lt p), @(is_contr_equiv_closed (group.equiv_of_isomorphism (unreduced_ordinary_cohomology_isomorphism_right _ (uH_circle_of_ge _ this)⁻¹ᵍ _) ⬝e left_module.equiv_of_isomorphism (converges_to.e fserre (n, s))⁻¹ˡᵐ)) (is_contr_ordinary_cohomology _ _ _ !is_contr_unit) --(unreduced_ordinary_cohomology_isomorphism_right _ _ _) --(is_contr_ordinary_cohomology_of_neg _ _ this) --(is_contr_ordinary_cohomology_of_neg _ _ this) definition fE00 : E (0,0) ≃lm LeftModule_int_of_AbGroup agℤ := begin refine (Einf_isomorphism fserre 0 _ _)⁻¹ˡᵐ ⬝lm fEinf0, intro r H, apply is_contr_fD2, exact sub_nat_lt 0 (r+1), intro r H, apply is_contr_fD, change 0 + (r + 1) >[ℤ] 0, apply of_nat_lt_of_nat_of_lt, apply nat.zero_lt_succ, end definition Ex0 (n : ℕ) : AddGroup_of_AddAbGroup (E (-n,0)) ≃g uH^n[K agℤ 2] := begin refine group_isomorphism_of_lm_isomorphism_int (converges_to.e fserre (-n,0)) ⬝g _, refine cohomology_change_int _ _ (ap neg !sub_zero ⬝ !neg_neg) ⬝g unreduced_ordinary_cohomology_isomorphism_right _ uH0_circle _, end definition Ex1 (n : ℕ) : AddGroup_of_AddAbGroup (E (-(n+(1 : ℤ)),- (1 : ℤ))) ≃g uH^n[K agℤ 2] := begin refine group_isomorphism_of_lm_isomorphism_int (converges_to.e fserre (-(n+(1 : ℤ)),- (1 : ℤ))) ⬝g _, refine cohomology_change_int _ _ (ap neg _ ⬝ !neg_neg) ⬝g unreduced_ordinary_cohomology_isomorphism_right _ !uH1_circle _, exact ap (λx, x - - (1 : ℤ)) !neg_add ⬝ !add_sub_cancel end definition uH0 : uH^0[K agℤ 2] ≃g gℤ := (Ex0 0)⁻¹ᵍ ⬝g group_isomorphism_of_lm_isomorphism_int fE00 definition fE10 : is_contr (E (- (1 : ℤ),0)) := begin refine @(is_trunc_equiv_closed _ _) (fEinf (- (1 : ℤ)) 0 dec_star), apply equiv_of_isomorphism, refine Einf_isomorphism fserre 0 _ _, intro r H, exact sorry, exact sorry --apply is_contr_fD2, change (- 1) - (- 1) >[ℤ] (- 0) - (r + 1), -- apply is_contr_fD, change (-0) - (r + 1) >[ℤ] 0, --exact sub_nat_lt 0 r, -- intro r H, apply is_contr_fD, change 0 + (r + 1) >[ℤ] 0, -- apply of_nat_lt_of_nat_of_lt, -- apply nat.zero_lt_succ, end definition uH1 : is_contr (uH^1[K agℤ 2]) := begin refine @(is_trunc_equiv_closed -2 (group.equiv_of_isomorphism !Ex0)) fE10, end end end temp