-- Authors: Floris van Doorn import homotopy.wedge open wedge pushout eq prod sum pointed equiv is_equiv unit lift namespace wedge definition wedge_flip [unfold 3] {A B : Type*} (x : A ∨ B) : B ∨ A := begin induction x, { exact inr a }, { exact inl a }, { exact (glue ⋆)⁻¹ } end -- TODO: fix precedences definition pwedge_flip [constructor] (A B : Type*) : (A ∨ B) →* (B ∨ A) := pmap.mk wedge_flip (glue ⋆)⁻¹ definition wedge_flip_wedge_flip {A B : Type*} (x : A ∨ B) : wedge_flip (wedge_flip x) = x := begin induction x, { reflexivity }, { reflexivity }, { apply eq_pathover_id_right, apply hdeg_square, exact ap_compose wedge_flip _ _ ⬝ ap02 _ !elim_glue ⬝ !ap_inv ⬝ !elim_glue⁻² ⬝ !inv_inv } end definition pwedge_comm [constructor] (A B : Type*) : A ∨ B ≃* B ∨ A := begin fapply pequiv.MK', { exact pwedge_flip A B }, { exact wedge_flip }, { exact wedge_flip_wedge_flip }, { exact wedge_flip_wedge_flip } end -- TODO: wedge is associative definition pwedge_pequiv [constructor] {A A' B B' : Type*} (a : A ≃* A') (b : B ≃* B') : A ∨ B ≃* A' ∨ B' := begin fapply pequiv_of_equiv, exact pushout.equiv !pconst !pconst !pconst !pconst !pequiv.refl a b (λdummy, respect_pt a) (λdummy, respect_pt b), exact ap pushout.inl (respect_pt a) end definition plift_pwedge.{u v} (A B : Type*) : plift.{u v} (A ∨ B) ≃* plift.{u v} A ∨ plift.{u v} B := calc plift.{u v} (A ∨ B) ≃* A ∨ B : by exact !pequiv_plift⁻¹ᵉ* ... ≃* plift.{u v} A ∨ plift.{u v} B : by exact pwedge_pequiv !pequiv_plift !pequiv_plift end wedge