-- definitions, theorems and attributes which should be moved to files in the HoTT library import homotopy.sphere2 homotopy.cofiber homotopy.wedge open eq nat int susp pointed pmap sigma is_equiv equiv fiber algebra trunc trunc_index pi group is_trunc function sphere attribute pwedge [constructor] attribute is_succ_add_right is_succ_add_left is_succ_bit0 [constructor] namespace eq definition compose_id {A B : Type} (f : A → B) : f ∘ id ~ f := by reflexivity definition id_compose {A B : Type} (f : A → B) : id ∘ f ~ f := by reflexivity end eq namespace cofiber -- replace the one in homotopy.cofiber, which has an superfluous argument protected theorem elim_glue' {A B : Type} {f : A → B} {P : Type} (Pbase : P) (Pcod : B → P) (Pglue : Π (x : A), Pbase = Pcod (f x)) (a : A) : ap (cofiber.elim Pbase Pcod Pglue) (cofiber.glue a) = Pglue a := !pushout.elim_glue end cofiber namespace wedge open pushout unit protected definition glue (A B : Type*) : inl pt = inr pt :> wedge A B := pushout.glue ⋆ end wedge namespace pointed definition to_fun_pequiv_trans {X Y Z : Type*} (f : X ≃* Y) (g :Y ≃* Z) : f ⬝e* g ~ g ∘ f := λx, idp definition pcompose2' {A B C : Type*} {g g' : B →* C} {f f' : A →* B} (q : g ~* g') (p : f ~* f') : g ∘* f ~* g' ∘* f' := pwhisker_right f q ⬝* pwhisker_left g' p infixr ` ◾*' `:80 := pcompose2' definition phomotopy_of_homotopy {X Y : Type*} {f g : X →* Y} (h : f ~ g) [is_set Y] : f ~* g := begin fapply phomotopy.mk, { exact h }, { apply is_set.elim } end -- /- the pointed type of (unpointed) dependent maps -/ -- definition pupi [constructor] {A : Type} (P : A → Type*) : Type* := -- pointed.mk' (Πa, P a) -- definition loop_pupi_commute {A : Type} (B : A → Type*) : Ω(pupi B) ≃* pupi (λa, Ω (B a)) := -- pequiv_of_equiv eq_equiv_homotopy rfl -- definition equiv_pupi_right {A : Type} {P Q : A → Type*} (g : Πa, P a ≃* Q a) -- : pupi P ≃* pupi Q := -- pequiv_of_equiv (pi_equiv_pi_right g) -- begin esimp, apply eq_of_homotopy, intros a, esimp, exact (respect_pt (g a)) end /- Squares of pointed homotopies We treat expressions of the form k ∘* f ~* g ∘* h as squares, where f is the top, g is the bottom, h is the left face and k is the right face. Then the following are operations on squares -/ definition psquare {A B C D : Type*} (f : A →* B) (g : C →* D) (h : A ≃* C) (k : B ≃* D) : Type := k ∘* f ~* g ∘* h definition phcompose {A B C D B' D' : Type*} {f : A →* B} {g : C →* D} {h : A →* C} {k : B →* D} {f' : B →* B'} {g' : D →* D'} {k' : B' →* D'} (p : k ∘* f ~* g ∘* h) (q : k' ∘* f' ~* g' ∘* k) : k' ∘* (f' ∘* f) ~* (g' ∘* g) ∘* h := !passoc⁻¹* ⬝* pwhisker_right f q ⬝* !passoc ⬝* pwhisker_left g' p ⬝* !passoc⁻¹* definition pvcompose {A B C D C' D' : Type*} {f : A →* B} {g : C →* D} {h : A →* C} {k : B →* D} {g' : C' →* D'} {h' : C →* C'} {k' : D →* D'} (p : k ∘* f ~* g ∘* h) (q : k' ∘* g ~* g' ∘* h') : (k' ∘* k) ∘* f ~* g' ∘* (h' ∘* h) := (phcompose p⁻¹* q⁻¹*)⁻¹* definition phinverse {A B C D : Type*} {f : A ≃* B} {g : C ≃* D} {h : A →* C} {k : B →* D} (p : k ∘* f ~* g ∘* h) : h ∘* f⁻¹ᵉ* ~* g⁻¹ᵉ* ∘* k := !pid_pcompose⁻¹* ⬝* pwhisker_right _ (pleft_inv g)⁻¹* ⬝* !passoc ⬝* pwhisker_left _ (!passoc⁻¹* ⬝* pwhisker_right _ p⁻¹* ⬝* !passoc ⬝* pwhisker_left _ !pright_inv ⬝* !pcompose_pid) definition pvinverse {A B C D : Type*} {f : A →* B} {g : C →* D} {h : A ≃* C} {k : B ≃* D} (p : k ∘* f ~* g ∘* h) : k⁻¹ᵉ* ∘* g ~* f ∘* h⁻¹ᵉ* := (phinverse p⁻¹*)⁻¹* infix ` ⬝h* `:73 := phcompose infix ` ⬝v* `:73 := pvcompose postfix `⁻¹ʰ*`:(max+1) := phinverse postfix `⁻¹ᵛ*`:(max+1) := pvinverse definition ap1_psquare {A B C D : Type*} {f : A →* B} {g : C →* D} {h : A →* C} {k : B →* D} (p : k ∘* f ~* g ∘* h) : Ω→ k ∘* Ω→ f ~* Ω→ g ∘* Ω→ h := !ap1_pcompose⁻¹* ⬝* ap1_phomotopy p ⬝* !ap1_pcompose definition apn_psquare (n : ℕ) {A B C D : Type*} {f : A →* B} {g : C →* D} {h : A →* C} {k : B →* D} (p : k ∘* f ~* g ∘* h) : Ω→[n] k ∘* Ω→[n] f ~* Ω→[n] g ∘* Ω→[n] h := !apn_pcompose⁻¹* ⬝* apn_phomotopy n p ⬝* !apn_pcompose definition ptrunc_functor_psquare (n : ℕ₋₂) {A B C D : Type*} {f : A →* B} {g : C →* D} {h : A →* C} {k : B →* D} (p : k ∘* f ~* g ∘* h) : ptrunc_functor n k ∘* ptrunc_functor n f ~* ptrunc_functor n g ∘* ptrunc_functor n h := !ptrunc_functor_pcompose⁻¹* ⬝* ptrunc_functor_phomotopy n p ⬝* !ptrunc_functor_pcompose definition homotopy_group_homomorphism_psquare (n : ℕ) [H : is_succ n] {A B C D : Type*} {f : A →* B} {g : C →* D} {h : A →* C} {k : B →* D} (p : k ∘* f ~* g ∘* h) : π→g[n] k ∘ π→g[n] f ~ π→g[n] g ∘ π→g[n] h := begin induction H with n, exact to_homotopy (ptrunc_functor_psquare 0 (apn_psquare (succ n) p)) end definition htyhcompose {A B C D B' D' : Type} {f : A → B} {g : C → D} {h : A → C} {k : B → D} {f' : B → B'} {g' : D → D'} {k' : B' → D'} (p : k ∘ f ~ g ∘ h) (q : k' ∘ f' ~ g' ∘ k) : k' ∘ (f' ∘ f) ~ (g' ∘ g) ∘ h := λa, q (f a) ⬝ ap g' (p a) definition htyhinverse {A B C D : Type} {f : A ≃ B} {g : C ≃ D} {h : A → C} {k : B → D} (p : k ∘ f ~ g ∘ h) : h ∘ f⁻¹ᵉ ~ g⁻¹ᵉ ∘ k := λb, eq_inv_of_eq ((p (f⁻¹ᵉ b))⁻¹ ⬝ ap k (to_right_inv f b)) end pointed open pointed namespace trunc -- TODO: redefine loopn_ptrunc_pequiv definition apn_ptrunc_functor (n : ℕ₋₂) (k : ℕ) {A B : Type*} (f : A →* B) : Ω→[k] (ptrunc_functor (n+k) f) ∘* (loopn_ptrunc_pequiv n k A)⁻¹ᵉ* ~* (loopn_ptrunc_pequiv n k B)⁻¹ᵉ* ∘* ptrunc_functor n (Ω→[k] f) := begin revert n, induction k with k IH: intro n, { reflexivity }, { exact sorry } end definition ptrunc_pequiv_natural [constructor] (n : ℕ₋₂) {A B : Type*} (f : A →* B) [is_trunc n A] [is_trunc n B] : f ∘* ptrunc_pequiv n A ~* ptrunc_pequiv n B ∘* ptrunc_functor n f := begin fapply phomotopy.mk, { intro a, induction a with a, reflexivity }, { refine !idp_con ⬝ _ ⬝ !idp_con⁻¹, refine !ap_compose'⁻¹ ⬝ _, apply ap_id } end definition ptr_natural [constructor] (n : ℕ₋₂) {A B : Type*} (f : A →* B) : ptrunc_functor n f ∘* ptr n A ~* ptr n B ∘* f := begin fapply phomotopy.mk, { intro a, reflexivity }, { reflexivity } end definition ptrunc_elim_pcompose (n : ℕ₋₂) {A B C : Type*} (g : B →* C) (f : A →* B) [is_trunc n B] [is_trunc n C] : ptrunc.elim n (g ∘* f) ~* g ∘* ptrunc.elim n f := begin fapply phomotopy.mk, { intro a, induction a with a, reflexivity }, { apply idp_con } end end trunc namespace is_equiv definition inv_homotopy_inv {A B : Type} {f g : A → B} [is_equiv f] [is_equiv g] (p : f ~ g) : f⁻¹ ~ g⁻¹ := λb, (left_inv g (f⁻¹ b))⁻¹ ⬝ ap g⁻¹ ((p (f⁻¹ b))⁻¹ ⬝ right_inv f b) definition to_inv_homotopy_to_inv {A B : Type} {f g : A ≃ B} (p : f ~ g) : f⁻¹ᵉ ~ g⁻¹ᵉ := inv_homotopy_inv p end is_equiv namespace prod open prod.ops definition prod_pathover_equiv {A : Type} {B C : A → Type} {a a' : A} (p : a = a') (x : B a × C a) (x' : B a' × C a') : x =[p] x' ≃ x.1 =[p] x'.1 × x.2 =[p] x'.2 := begin fapply equiv.MK, { intro q, induction q, constructor: constructor }, { intro v, induction v with q r, exact prod_pathover _ _ _ q r }, { intro v, induction v with q r, induction x with b c, induction x' with b' c', esimp at *, induction q, refine idp_rec_on r _, reflexivity }, { intro q, induction q, induction x with b c, reflexivity } end end prod open prod namespace sigma -- set_option pp.notation false -- set_option pp.binder_types true open sigma.ops definition pathover_pr1 [unfold 9] {A : Type} {B : A → Type} {C : Πa, B a → Type} {a a' : A} {p : a = a'} {x : Σb, C a b} {x' : Σb', C a' b'} (q : x =[p] x') : x.1 =[p] x'.1 := begin induction q, constructor end definition is_prop_elimo_self {A : Type} (B : A → Type) {a : A} (b : B a) {H : is_prop (B a)} : @is_prop.elimo A B a a idp b b H = idpo := !is_prop.elim definition sigma_pathover_equiv_of_is_prop {A : Type} {B : A → Type} (C : Πa, B a → Type) {a a' : A} (p : a = a') (x : Σb, C a b) (x' : Σb', C a' b') [Πa b, is_prop (C a b)] : x =[p] x' ≃ x.1 =[p] x'.1 := begin fapply equiv.MK, { exact pathover_pr1 }, { intro q, induction x with b c, induction x' with b' c', esimp at q, induction q, apply pathover_idp_of_eq, exact sigma_eq idp !is_prop.elimo }, { intro q, induction x with b c, induction x' with b' c', esimp at q, induction q, have c = c', from !is_prop.elim, induction this, rewrite [▸*, is_prop_elimo_self (C a) c] }, { intro q, induction q, induction x with b c, rewrite [▸*, is_prop_elimo_self (C a) c] } end definition sigma_ua {A B : Type} (C : A ≃ B → Type) : (Σ(p : A = B), C (equiv_of_eq p)) ≃ Σ(e : A ≃ B), C e := sigma_equiv_sigma_left' !eq_equiv_equiv -- definition sigma_pathover_equiv_of_is_prop {A : Type} {B : A → Type} {C : Πa, B a → Type} -- {a a' : A} {p : a = a'} {b : B a} {b' : B a'} {c : C a b} {c' : C a' b'} -- [Πa b, is_prop (C a b)] : ⟨b, c⟩ =[p] ⟨b', c'⟩ ≃ b =[p] b' := -- begin -- fapply equiv.MK, -- { exact pathover_pr1 }, -- { intro q, induction q, apply pathover_idp_of_eq, exact sigma_eq idp !is_prop.elimo }, -- { intro q, induction q, -- have c = c', from !is_prop.elim, induction this, -- rewrite [▸*, is_prop_elimo_self (C a) c] }, -- { esimp, generalize ⟨b, c⟩, intro x q, } -- end --rexact @(ap pathover_pr1) _ idpo _, end sigma open sigma namespace group open is_trunc definition to_fun_isomorphism_trans {G H K : Group} (φ : G ≃g H) (ψ : H ≃g K) : φ ⬝g ψ ~ ψ ∘ φ := by reflexivity definition pmap_of_homomorphism_gid (G : Group) : pmap_of_homomorphism (gid G) ~* pid G := begin fapply phomotopy_of_homotopy, reflexivity end definition pmap_of_homomorphism_gcompose {G H K : Group} (ψ : H →g K) (φ : G →g H) : pmap_of_homomorphism (ψ ∘g φ) ~* pmap_of_homomorphism ψ ∘* pmap_of_homomorphism φ := begin fapply phomotopy_of_homotopy, reflexivity end definition pmap_of_homomorphism_phomotopy {G H : Group} {φ ψ : G →g H} (H : φ ~ ψ) : pmap_of_homomorphism φ ~* pmap_of_homomorphism ψ := begin fapply phomotopy_of_homotopy, exact H end definition pequiv_of_isomorphism_trans {G₁ G₂ G₃ : Group} (φ : G₁ ≃g G₂) (ψ : G₂ ≃g G₂) : pequiv_of_isomorphism (φ ⬝g ψ) ~* pequiv_of_isomorphism ψ ∘* pequiv_of_isomorphism φ := begin apply phomotopy_of_homotopy, reflexivity end definition isomorphism_eq {G H : Group} {φ ψ : G ≃g H} (p : φ ~ ψ) : φ = ψ := begin induction φ with φ φe, induction ψ with ψ ψe, exact apd011 isomorphism.mk (homomorphism_eq p) !is_prop.elimo end definition is_set_isomorphism [instance] (G H : Group) : is_set (G ≃g H) := begin have H : G ≃g H ≃ Σ(f : G →g H), is_equiv f, begin fapply equiv.MK, { intro φ, induction φ, constructor, assumption }, { intro v, induction v, constructor, assumption }, { intro v, induction v, reflexivity }, { intro φ, induction φ, reflexivity } end, apply is_trunc_equiv_closed_rev, exact H end -- definition is_equiv_isomorphism -- some extra instances for type class inference -- definition is_homomorphism_comm_homomorphism [instance] {G G' : AbGroup} (φ : G →g G') -- : @is_homomorphism G G' (@ab_group.to_group _ (AbGroup.struct G)) -- (@ab_group.to_group _ (AbGroup.struct G')) φ := -- homomorphism.struct φ -- definition is_homomorphism_comm_homomorphism1 [instance] {G G' : AbGroup} (φ : G →g G') -- : @is_homomorphism G G' _ -- (@ab_group.to_group _ (AbGroup.struct G')) φ := -- homomorphism.struct φ -- definition is_homomorphism_comm_homomorphism2 [instance] {G G' : AbGroup} (φ : G →g G') -- : @is_homomorphism G G' (@ab_group.to_group _ (AbGroup.struct G)) _ φ := -- homomorphism.struct φ end group open group namespace pi -- move to types.arrow definition pmap_eq_equiv {X Y : Type*} (f g : X →* Y) : (f = g) ≃ (f ~* g) := begin refine eq_equiv_fn_eq_of_equiv (@pmap.sigma_char X Y) f g ⬝e _, refine !sigma_eq_equiv ⬝e _, refine _ ⬝e (phomotopy.sigma_char f g)⁻¹ᵉ, fapply sigma_equiv_sigma, { esimp, apply eq_equiv_homotopy }, { induction g with g gp, induction Y with Y y0, esimp, intro p, induction p, esimp at *, refine !pathover_idp ⬝e _, refine _ ⬝e !eq_equiv_eq_symm, apply equiv_eq_closed_right, exact !idp_con⁻¹ } end definition pmap_eq_idp {X Y : Type*} (f : X →* Y) : pmap_eq (λx, idpath (f x)) !idp_con⁻¹ = idpath f := begin cases f with f p, esimp [pmap_eq], refine apd011 (apd011 pmap.mk) !eq_of_homotopy_idp _, induction Y with Y y0, esimp at *, induction p, esimp, exact sorry end definition pfunext [constructor] (X Y : Type*) : ppmap X (Ω Y) ≃* Ω (ppmap X Y) := begin fapply pequiv_of_equiv, { fapply equiv.MK: esimp, { intro f, fapply pmap_eq, { intro x, exact f x }, { exact (respect_pt f)⁻¹ }}, { intro p, fapply pmap.mk, { intro x, exact ap010 pmap.to_fun p x }, { note z := apd respect_pt p, note z2 := square_of_pathover z, refine eq_of_hdeg_square z2 ⬝ !ap_constant }}, { intro p, exact sorry }, { intro p, exact sorry }}, { apply pmap_eq_idp} end end pi open pi namespace eq infix ` ⬝hty `:75 := homotopy.trans postfix `⁻¹ʰᵗʸ`:(max+1) := homotopy.symm definition hassoc {A B C D : Type} (h : C → D) (g : B → C) (f : A → B) : (h ∘ g) ∘ f ~ h ∘ (g ∘ f) := λa, idp -- to algebra.homotopy_group definition homotopy_group_homomorphism_pcompose (n : ℕ) [H : is_succ n] {A B C : Type*} (g : B →* C) (f : A →* B) : π→g[n] (g ∘* f) ~ π→g[n] g ∘ π→g[n] f := begin induction H with n, exact to_homotopy (homotopy_group_functor_compose (succ n) g f) end definition apn_pinv (n : ℕ) {A B : Type*} (f : A ≃* B) : Ω→[n] f⁻¹ᵉ* ~* (loopn_pequiv_loopn n f)⁻¹ᵉ* := begin refine !to_pinv_pequiv_MK2⁻¹* end -- definition homotopy_group_homomorphism_pinv (n : ℕ) {A B : Type*} (f : A ≃* B) : -- π→g[n+1] f⁻¹ᵉ* ~ (homotopy_group_isomorphism_of_pequiv n f)⁻¹ᵍ := -- begin -- -- refine ptrunc_functor_phomotopy 0 !apn_pinv ⬝hty _, -- -- intro x, esimp, -- end -- definition natural_square_tr_eq {A B : Type} {a a' : A} {f g : A → B} -- (p : f ~ g) (q : a = a') : natural_square p q = square_of_pathover (apd p q) := -- idp end eq open eq namespace fiber definition ap1_ppoint_phomotopy {A B : Type*} (f : A →* B) : Ω→ (ppoint f) ∘* pfiber_loop_space f ~* ppoint (Ω→ f) := begin exact sorry end definition pfiber_equiv_of_square_ppoint {A B C D : Type*} {f : A →* B} {g : C →* D} (h : A ≃* C) (k : B ≃* D) (s : k ∘* f ~* g ∘* h) : ppoint g ∘* pfiber_equiv_of_square h k s ~* h ∘* ppoint f := sorry end fiber namespace is_trunc definition center' {A : Type} (H : is_contr A) : A := center A end is_trunc namespace is_conn open unit trunc_index nat is_trunc pointed.ops definition is_contr_of_trivial_homotopy' (n : ℕ₋₂) (A : Type) [is_trunc n A] [is_conn -1 A] (H : Πk a, is_contr (π[k] (pointed.MK A a))) : is_contr A := begin assert aa : trunc -1 A, { apply center }, assert H3 : is_conn 0 A, { induction aa with a, exact H 0 a }, exact is_contr_of_trivial_homotopy n A H end -- don't make is_prop_is_trunc an instance definition is_trunc_succ_is_trunc [instance] (n m : ℕ₋₂) (A : Type) : is_trunc (n.+1) (is_trunc m A) := is_trunc_of_le _ !minus_one_le_succ definition is_conn_of_trivial_homotopy (n : ℕ₋₂) (m : ℕ) (A : Type) [is_trunc n A] [is_conn 0 A] (H : Π(k : ℕ) a, k ≤ m → is_contr (π[k] (pointed.MK A a))) : is_conn m A := begin apply is_contr_of_trivial_homotopy_nat m (trunc m A), intro k a H2, induction a with a, apply is_trunc_equiv_closed_rev, exact equiv_of_pequiv (homotopy_group_trunc_of_le (pointed.MK A a) _ _ H2), exact H k a H2 end definition is_conn_of_trivial_homotopy_pointed (n : ℕ₋₂) (m : ℕ) (A : Type*) [is_trunc n A] (H : Π(k : ℕ), k ≤ m → is_contr (π[k] A)) : is_conn m A := begin have is_conn 0 A, proof H 0 !zero_le qed, apply is_conn_of_trivial_homotopy n m A, intro k a H2, revert a, apply is_conn.elim -1, cases A with A a, exact H k H2 end end is_conn namespace circle /- Suppose for `f, g : A -> B` I prove a homotopy `H : f ~ g` by induction on the element in `A`. And suppose `p : a = a'` is a path constructor in `A`. Then `natural_square_tr H p` has type `square (H a) (H a') (ap f p) (ap g p)` and is equal to the square which defined H on the path constructor -/ definition natural_square_elim_loop {A : Type} {f g : S¹ → A} (p : f base = g base) (q : square p p (ap f loop) (ap g loop)) : natural_square (circle.rec p (eq_pathover q)) loop = q := begin -- refine !natural_square_eq ⬝ _, refine ap square_of_pathover !rec_loop ⬝ _, exact to_right_inv !eq_pathover_equiv_square q end end circle namespace susp definition psusp_functor_phomotopy {A B : Type*} {f g : A →* B} (p : f ~* g) : psusp_functor f ~* psusp_functor g := begin fapply phomotopy.mk, { intro x, induction x, { reflexivity }, { reflexivity }, { apply eq_pathover, apply hdeg_square, esimp, refine !elim_merid ⬝ _ ⬝ !elim_merid⁻¹ᵖ, exact ap merid (p a), }}, { reflexivity }, end definition psusp_functor_pid (A : Type*) : psusp_functor (pid A) ~* pid (psusp A) := begin fapply phomotopy.mk, { intro x, induction x, { reflexivity }, { reflexivity }, { apply eq_pathover_id_right, apply hdeg_square, apply elim_merid }}, { reflexivity }, end definition psusp_functor_pcompose {A B C : Type*} (g : B →* C) (f : A →* B) : psusp_functor (g ∘* f) ~* psusp_functor g ∘* psusp_functor f := begin fapply phomotopy.mk, { intro x, induction x, { reflexivity }, { reflexivity }, { apply eq_pathover, apply hdeg_square, esimp, refine !elim_merid ⬝ _ ⬝ (ap_compose (psusp_functor g) _ _)⁻¹ᵖ, refine _ ⬝ ap02 _ !elim_merid⁻¹, exact !elim_merid⁻¹ }}, { reflexivity }, end definition psusp_elim_psusp_functor {A B C : Type*} (g : B →* Ω C) (f : A →* B) : psusp.elim g ∘* psusp_functor f ~* psusp.elim (g ∘* f) := begin refine !passoc ⬝* _, exact pwhisker_left _ !psusp_functor_pcompose⁻¹* end definition psusp_elim_phomotopy {A B : Type*} {f g : A →* Ω B} (p : f ~* g) : psusp.elim f ~* psusp.elim g := pwhisker_left _ (psusp_functor_phomotopy p) definition psusp_elim_natural {X Y Z : Type*} (g : Y →* Z) (f : X →* Ω Y) : g ∘* psusp.elim f ~* psusp.elim (Ω→ g ∘* f) := begin refine _ ⬝* pwhisker_left _ !psusp_functor_pcompose⁻¹*, refine !passoc⁻¹* ⬝* _ ⬝* !passoc, exact pwhisker_right _ !loop_psusp_counit_natural end end susp namespace category -- replace precategory_group with precategory_Group (the former has a universe error) definition precategory_Group.{u} [instance] [constructor] : precategory.{u+1 u} Group := begin fapply precategory.mk, { exact λG H, G →g H }, { exact _ }, { exact λG H K ψ φ, ψ ∘g φ }, { exact λG, gid G }, { intros, apply homomorphism_eq, esimp }, { intros, apply homomorphism_eq, esimp }, { intros, apply homomorphism_eq, esimp } end definition precategory_AbGroup.{u} [instance] [constructor] : precategory.{u+1 u} AbGroup := begin fapply precategory.mk, { exact λG H, G →g H }, { exact _ }, { exact λG H K ψ φ, ψ ∘g φ }, { exact λG, gid G }, { intros, apply homomorphism_eq, esimp }, { intros, apply homomorphism_eq, esimp }, { intros, apply homomorphism_eq, esimp } end open iso definition Group_is_iso_of_is_equiv {G H : Group} (φ : G →g H) (H : is_equiv (group_fun φ)) : is_iso φ := begin fconstructor, { exact (isomorphism.mk φ H)⁻¹ᵍ }, { apply homomorphism_eq, rexact left_inv φ }, { apply homomorphism_eq, rexact right_inv φ } end definition Group_is_equiv_of_is_iso {G H : Group} (φ : G ⟶ H) (Hφ : is_iso φ) : is_equiv (group_fun φ) := begin fapply adjointify, { exact group_fun φ⁻¹ʰ }, { note p := right_inverse φ, exact ap010 group_fun p }, { note p := left_inverse φ, exact ap010 group_fun p } end definition Group_iso_equiv (G H : Group) : (G ≅ H) ≃ (G ≃g H) := begin fapply equiv.MK, { intro φ, induction φ with φ φi, constructor, exact Group_is_equiv_of_is_iso φ _ }, { intro v, induction v with φ φe, constructor, exact Group_is_iso_of_is_equiv φ _ }, { intro v, induction v with φ φe, apply isomorphism_eq, reflexivity }, { intro φ, induction φ with φ φi, apply iso_eq, reflexivity } end definition Group_props.{u} {A : Type.{u}} (v : (A → A → A) × (A → A) × A) : Prop.{u} := begin induction v with m v, induction v with i o, fapply trunctype.mk, { exact is_set A × (Πa, m a o = a) × (Πa, m o a = a) × (Πa b c, m (m a b) c = m a (m b c)) × (Πa, m (i a) a = o) }, { apply is_trunc_of_imp_is_trunc, intro v, induction v with H v, have is_prop (Πa, m a o = a), from _, have is_prop (Πa, m o a = a), from _, have is_prop (Πa b c, m (m a b) c = m a (m b c)), from _, have is_prop (Πa, m (i a) a = o), from _, apply is_trunc_prod } end definition Group.sigma_char2.{u} : Group.{u} ≃ Σ(A : Type.{u}) (v : (A → A → A) × (A → A) × A), Group_props v := begin fapply equiv.MK, { intro G, refine ⟨G, _⟩, induction G with G g, induction g with m s ma o om mo i mi, repeat (fconstructor; do 2 try assumption), }, { intro v, induction v with x v, induction v with y v, repeat induction y with x y, repeat induction v with x v, constructor, fconstructor, repeat assumption }, { intro v, induction v with x v, induction v with y v, repeat induction y with x y, repeat induction v with x v, reflexivity }, { intro v, repeat induction v with x v, reflexivity }, end open is_trunc section local attribute group.to_has_mul group.to_has_inv [coercion] theorem inv_eq_of_mul_eq {A : Type} (G H : group A) (p : @mul A G ~2 @mul A H) : @inv A G ~ @inv A H := begin have foo : Π(g : A), @inv A G g = (@inv A G g * g) * @inv A H g, from λg, !mul_inv_cancel_right⁻¹, cases G with Gm Gs Gh1 G1 Gh2 Gh3 Gi Gh4, cases H with Hm Hs Hh1 H1 Hh2 Hh3 Hi Hh4, change Gi ~ Hi, intro g, have p' : Gm ~2 Hm, from p, calc Gi g = Hm (Hm (Gi g) g) (Hi g) : foo ... = Hm (Gm (Gi g) g) (Hi g) : by rewrite p' ... = Hm G1 (Hi g) : by rewrite Gh4 ... = Gm G1 (Hi g) : by rewrite p' ... = Hi g : Gh2 end theorem one_eq_of_mul_eq {A : Type} (G H : group A) (p : @mul A (group.to_has_mul G) ~2 @mul A (group.to_has_mul H)) : @one A (group.to_has_one G) = @one A (group.to_has_one H) := begin cases G with Gm Gs Gh1 G1 Gh2 Gh3 Gi Gh4, cases H with Hm Hs Hh1 H1 Hh2 Hh3 Hi Hh4, exact (Hh2 G1)⁻¹ ⬝ (p H1 G1)⁻¹ ⬝ Gh3 H1, end end open prod.ops definition group_of_Group_props.{u} {A : Type.{u}} {m : A → A → A} {i : A → A} {o : A} (H : Group_props (m, (i, o))) : group A := ⦃group, mul := m, inv := i, one := o, is_set_carrier := H.1, mul_one := H.2.1, one_mul := H.2.2.1, mul_assoc := H.2.2.2.1, mul_left_inv := H.2.2.2.2⦄ theorem Group_eq_equiv_lemma2 {A : Type} {m m' : A → A → A} {i i' : A → A} {o o' : A} (H : Group_props (m, (i, o))) (H' : Group_props (m', (i', o'))) : (m, (i, o)) = (m', (i', o')) ≃ (m ~2 m') := begin have is_set A, from pr1 H, apply equiv_of_is_prop, { intro p, exact apd100 (eq_pr1 p)}, { intro p, apply prod_eq (eq_of_homotopy2 p), apply prod_eq: esimp [Group_props] at *; esimp, { apply eq_of_homotopy, exact inv_eq_of_mul_eq (group_of_Group_props H) (group_of_Group_props H') p }, { exact one_eq_of_mul_eq (group_of_Group_props H) (group_of_Group_props H') p }} end open sigma.ops theorem Group_eq_equiv_lemma {G H : Group} (p : (Group.sigma_char2 G).1 = (Group.sigma_char2 H).1) : ((Group.sigma_char2 G).2 =[p] (Group.sigma_char2 H).2) ≃ (is_homomorphism (equiv_of_eq (proof p qed : Group.carrier G = Group.carrier H))) := begin refine !sigma_pathover_equiv_of_is_prop ⬝e _, induction G with G g, induction H with H h, esimp [Group.sigma_char2] at p, induction p, refine !pathover_idp ⬝e _, induction g with m s ma o om mo i mi, induction h with μ σ μa ε εμ με ι μι, exact Group_eq_equiv_lemma2 (Group.sigma_char2 (Group.mk G (group.mk m s ma o om mo i mi))).2.2 (Group.sigma_char2 (Group.mk G (group.mk μ σ μa ε εμ με ι μι))).2.2 end definition isomorphism.sigma_char (G H : Group) : (G ≃g H) ≃ Σ(e : G ≃ H), is_homomorphism e := begin fapply equiv.MK, { intro φ, exact ⟨equiv_of_isomorphism φ, to_respect_mul φ⟩ }, { intro v, induction v with e p, exact isomorphism_of_equiv e p }, { intro v, induction v with e p, induction e, reflexivity }, { intro φ, induction φ with φ H, induction φ, reflexivity }, end definition Group_eq_equiv (G H : Group) : G = H ≃ (G ≃g H) := begin refine (eq_equiv_fn_eq_of_equiv Group.sigma_char2 G H) ⬝e _, refine !sigma_eq_equiv ⬝e _, refine sigma_equiv_sigma_right Group_eq_equiv_lemma ⬝e _, transitivity (Σ(e : (Group.sigma_char2 G).1 ≃ (Group.sigma_char2 H).1), @is_homomorphism _ _ _ _ (to_fun e)), apply sigma_ua, exact !isomorphism.sigma_char⁻¹ᵉ end definition to_fun_Group_eq_equiv {G H : Group} (p : G = H) : Group_eq_equiv G H p ~ isomorphism_of_eq p := begin induction p, reflexivity end definition Group_eq2 {G H : Group} {p q : G = H} (r : isomorphism_of_eq p ~ isomorphism_of_eq q) : p = q := begin apply eq_of_fn_eq_fn (Group_eq_equiv G H), apply isomorphism_eq, intro g, refine to_fun_Group_eq_equiv p g ⬝ r g ⬝ (to_fun_Group_eq_equiv q g)⁻¹, end definition Group_eq_equiv_Group_iso (G₁ G₂ : Group) : G₁ = G₂ ≃ G₁ ≅ G₂ := Group_eq_equiv G₁ G₂ ⬝e (Group_iso_equiv G₁ G₂)⁻¹ᵉ definition category_Group.{u} : category Group.{u} := category.mk precategory_Group begin intro G H, apply is_equiv_of_equiv_of_homotopy (Group_eq_equiv_Group_iso G H), intro p, induction p, fapply iso_eq, apply homomorphism_eq, reflexivity end definition category_AbGroup : category AbGroup := category.mk precategory_AbGroup sorry definition Grp.{u} [constructor] : Category := category.Mk Group.{u} category_Group definition AbGrp [constructor] : Category := category.Mk AbGroup category_AbGroup end category namespace sphere -- definition constant_sphere_map_sphere {n m : ℕ} (H : n < m) (f : S* n →* S* m) : -- f ~* pconst (S* n) (S* m) := -- begin -- assert H : is_contr (Ω[n] (S* m)), -- { apply homotopy_group_sphere_le, }, -- apply phomotopy_of_eq, -- apply eq_of_fn_eq_fn !psphere_pmap_pequiv, -- apply @is_prop.elim -- end end sphere definition image_pathover {A B : Type} (f : A → B) {x y : B} (p : x = y) (u : image f x) (v : image f y) : u =[p] v := begin apply is_prop.elimo end section injective_surjective open trunc fiber image variables {A B C : Type} [is_set A] [is_set B] [is_set C] (f : A → B) (g : B → C) (h : A → C) (H : g ∘ f ~ h) include H definition is_embedding_factor : is_embedding h → is_embedding f := begin induction H using homotopy.rec_on_idp, intro E, fapply is_embedding_of_is_injective, intro x y p, fapply @is_injective_of_is_embedding _ _ _ E _ _ (ap g p) end definition is_surjective_factor : is_surjective h → is_surjective g := begin induction H using homotopy.rec_on_idp, intro S, intro c, note p := S c, induction p, apply tr, fapply fiber.mk, exact f a, exact p end end injective_surjective