/- Copyright (c) 2017 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad -/ import types.trunc .logic open funext eq trunc is_trunc logic definition property (X : Type) := X → Prop namespace property variable {X : Type} /- membership and subproperty -/ definition mem (x : X) (a : property X) := a x infix ∈ := mem notation a ∉ b := ¬ mem a b /-theorem ext {a b : property X} (H : ∀x, x ∈ a ↔ x ∈ b) : a = b := eq_of_homotopy (take x, propext (H x)) -/ definition subproperty (a b : property X) : Prop := Prop.mk (∀⦃x⦄, x ∈ a → x ∈ b) _ infix ⊆ := subproperty definition superproperty (s t : property X) : Prop := t ⊆ s infix ⊇ := superproperty theorem subproperty.refl (a : property X) : a ⊆ a := take x, assume H, H theorem subproperty.trans {a b c : property X} (subab : a ⊆ b) (subbc : b ⊆ c) : a ⊆ c := take x, assume ax, subbc (subab ax) /- theorem subproperty.antisymm {a b : property X} (h₁ : a ⊆ b) (h₂ : b ⊆ a) : a = b := ext (λ x, iff.intro (λ ina, h₁ ina) (λ inb, h₂ inb)) -/ -- an alterantive name /- theorem eq_of_subproperty_of_subproperty {a b : property X} (h₁ : a ⊆ b) (h₂ : b ⊆ a) : a = b := subproperty.antisymm h₁ h₂ -/ theorem exteq_of_subproperty_of_subproperty {a b : property X} (h₁ : a ⊆ b) (h₂ : b ⊆ a) : ∀ ⦃x⦄, x ∈ a ↔ x ∈ b := λ x, iff.intro (λ h, h₁ h) (λ h, h₂ h) theorem mem_of_subproperty_of_mem {s₁ s₂ : property X} {a : X} : s₁ ⊆ s₂ → a ∈ s₁ → a ∈ s₂ := assume h₁ h₂, h₁ _ h₂ /- empty property -/ definition empty : property X := λx, false notation `∅` := property.empty theorem not_mem_empty (x : X) : ¬ (x ∈ ∅) := assume H : x ∈ ∅, false.elim H theorem mem_empty_eq (x : X) : x ∈ ∅ = false := rfl /- theorem eq_empty_of_forall_not_mem {s : property X} (H : ∀ x, x ∉ s) : s = ∅ := ext (take x, iff.intro (assume xs, absurd xs (H x)) (assume xe, absurd xe (not_mem_empty x))) -/ theorem ne_empty_of_mem {s : property X} {x : X} (H : x ∈ s) : s ≠ ∅ := begin intro Hs, rewrite Hs at H, apply not_mem_empty x H end theorem empty_subproperty (s : property X) : ∅ ⊆ s := take x, assume H, false.elim H /-theorem eq_empty_of_subproperty_empty {s : property X} (H : s ⊆ ∅) : s = ∅ := subproperty.antisymm H (empty_subproperty s) theorem subproperty_empty_iff (s : property X) : s ⊆ ∅ ↔ s = ∅ := iff.intro eq_empty_of_subproperty_empty (take xeq, by rewrite xeq; apply subproperty.refl ∅) -/ /- universal property -/ definition univ : property X := λx, true theorem mem_univ (x : X) : x ∈ univ := trivial theorem mem_univ_eq (x : X) : x ∈ univ = true := rfl theorem empty_ne_univ [h : inhabited X] : (empty : property X) ≠ univ := assume H : empty = univ, absurd (mem_univ (inhabited.value h)) (eq.rec_on H (not_mem_empty (arbitrary X))) theorem subproperty_univ (s : property X) : s ⊆ univ := λ x H, trivial /- theorem eq_univ_of_univ_subproperty {s : property X} (H : univ ⊆ s) : s = univ := eq_of_subproperty_of_subproperty (subproperty_univ s) H -/ /- theorem eq_univ_of_forall {s : property X} (H : ∀ x, x ∈ s) : s = univ := ext (take x, iff.intro (assume H', trivial) (assume H', H x)) -/ /- union -/ definition union (a b : property X) : property X := λx, x ∈ a ∨ x ∈ b notation a ∪ b := union a b theorem mem_union_left {x : X} {a : property X} (b : property X) : x ∈ a → x ∈ a ∪ b := assume h, or.inl h theorem mem_union_right {x : X} {b : property X} (a : property X) : x ∈ b → x ∈ a ∪ b := assume h, or.inr h theorem mem_unionl {x : X} {a b : property X} : x ∈ a → x ∈ a ∪ b := assume h, or.inl h theorem mem_unionr {x : X} {a b : property X} : x ∈ b → x ∈ a ∪ b := assume h, or.inr h theorem mem_or_mem_of_mem_union {x : X} {a b : property X} (H : x ∈ a ∪ b) : x ∈ a ∨ x ∈ b := H theorem mem_union.elim {x : X} {a b : property X} {P : Prop} (H₁ : x ∈ a ∪ b) (H₂ : x ∈ a → P) (H₃ : x ∈ b → P) : P := or.elim H₁ H₂ H₃ theorem mem_union_iff (x : X) (a b : property X) : x ∈ a ∪ b ↔ x ∈ a ∨ x ∈ b := !iff.refl theorem mem_union_eq (x : X) (a b : property X) : x ∈ a ∪ b = (x ∈ a ∨ x ∈ b) := rfl --theorem union_self (a : property X) : a ∪ a = a := --ext (take x, !or_self) --theorem union_empty (a : property X) : a ∪ ∅ = a := --ext (take x, !or_false) --theorem empty_union (a : property X) : ∅ ∪ a = a := --ext (take x, !false_or) --theorem union_comm (a b : property X) : a ∪ b = b ∪ a := --ext (take x, or.comm) --theorem union_assoc (a b c : property X) : (a ∪ b) ∪ c = a ∪ (b ∪ c) := --ext (take x, or.assoc) --theorem union_left_comm (s₁ s₂ s₃ : property X) : s₁ ∪ (s₂ ∪ s₃) = s₂ ∪ (s₁ ∪ s₃) := --!left_comm union_comm union_assoc s₁ s₂ s₃ --theorem union_right_comm (s₁ s₂ s₃ : property X) : (s₁ ∪ s₂) ∪ s₃ = (s₁ ∪ s₃) ∪ s₂ := --!right_comm union_comm union_assoc s₁ s₂ s₃ theorem subproperty_union_left (s t : property X) : s ⊆ s ∪ t := λ x H, or.inl H theorem subproperty_union_right (s t : property X) : t ⊆ s ∪ t := λ x H, or.inr H theorem union_subproperty {s t r : property X} (sr : s ⊆ r) (tr : t ⊆ r) : s ∪ t ⊆ r := λ x xst, or.elim xst (λ xs, sr xs) (λ xt, tr xt) /- intersection -/ definition inter (a b : property X) : property X := λx, x ∈ a ∧ x ∈ b notation a ∩ b := inter a b theorem mem_inter_iff (x : X) (a b : property X) : x ∈ a ∩ b ↔ x ∈ a ∧ x ∈ b := !iff.refl theorem mem_inter_eq (x : X) (a b : property X) : x ∈ a ∩ b = (x ∈ a ∧ x ∈ b) := rfl theorem mem_inter {x : X} {a b : property X} (Ha : x ∈ a) (Hb : x ∈ b) : x ∈ a ∩ b := and.intro Ha Hb theorem mem_of_mem_inter_left {x : X} {a b : property X} (H : x ∈ a ∩ b) : x ∈ a := and.left H theorem mem_of_mem_inter_right {x : X} {a b : property X} (H : x ∈ a ∩ b) : x ∈ b := and.right H --theorem inter_self (a : property X) : a ∩ a = a := --ext (take x, !and_self) --theorem inter_empty (a : property X) : a ∩ ∅ = ∅ := --ext (take x, !and_false) --theorem empty_inter (a : property X) : ∅ ∩ a = ∅ := --ext (take x, !false_and) --theorem nonempty_of_inter_nonempty_right {T : Type} {s t : property T} (H : s ∩ t ≠ ∅) : t ≠ ∅ := --suppose t = ∅, --have s ∩ t = ∅, by rewrite this; apply inter_empty, --H this --theorem nonempty_of_inter_nonempty_left {T : Type} {s t : property T} (H : s ∩ t ≠ ∅) : s ≠ ∅ := --suppose s = ∅, --have s ∩ t = ∅, by rewrite this; apply empty_inter, --H this --theorem inter_comm (a b : property X) : a ∩ b = b ∩ a := --ext (take x, !and.comm) --theorem inter_assoc (a b c : property X) : (a ∩ b) ∩ c = a ∩ (b ∩ c) := --ext (take x, !and.assoc) --theorem inter_left_comm (s₁ s₂ s₃ : property X) : s₁ ∩ (s₂ ∩ s₃) = s₂ ∩ (s₁ ∩ s₃) := --!left_comm inter_comm inter_assoc s₁ s₂ s₃ --theorem inter_right_comm (s₁ s₂ s₃ : property X) : (s₁ ∩ s₂) ∩ s₃ = (s₁ ∩ s₃) ∩ s₂ := --!right_comm inter_comm inter_assoc s₁ s₂ s₃ --theorem inter_univ (a : property X) : a ∩ univ = a := --ext (take x, !and_true) --theorem univ_inter (a : property X) : univ ∩ a = a := --ext (take x, !true_and) theorem inter_subproperty_left (s t : property X) : s ∩ t ⊆ s := λ x H, and.left H theorem inter_subproperty_right (s t : property X) : s ∩ t ⊆ t := λ x H, and.right H theorem inter_subproperty_inter_right {s t : property X} (u : property X) (H : s ⊆ t) : s ∩ u ⊆ t ∩ u := take x, assume xsu, and.intro (H (and.left xsu)) (and.right xsu) theorem inter_subproperty_inter_left {s t : property X} (u : property X) (H : s ⊆ t) : u ∩ s ⊆ u ∩ t := take x, assume xus, and.intro (and.left xus) (H (and.right xus)) theorem subproperty_inter {s t r : property X} (rs : r ⊆ s) (rt : r ⊆ t) : r ⊆ s ∩ t := λ x xr, and.intro (rs xr) (rt xr) --theorem not_mem_of_mem_of_not_mem_inter_left {s t : property X} {x : X} (Hxs : x ∈ s) (Hnm : x ∉ s ∩ t) : x ∉ t := -- suppose x ∈ t, -- have x ∈ s ∩ t, from and.intro Hxs this, -- show false, from Hnm this --theorem not_mem_of_mem_of_not_mem_inter_right {s t : property X} {x : X} (Hxs : x ∈ t) (Hnm : x ∉ s ∩ t) : x ∉ s := -- suppose x ∈ s, -- have x ∈ s ∩ t, from and.intro this Hxs, -- show false, from Hnm this /- distributivity laws -/ --theorem inter_distrib_left (s t u : property X) : s ∩ (t ∪ u) = (s ∩ t) ∪ (s ∩ u) := --ext (take x, !and.left_distrib) --theorem inter_distrib_right (s t u : property X) : (s ∪ t) ∩ u = (s ∩ u) ∪ (t ∩ u) := --ext (take x, !and.right_distrib) --theorem union_distrib_left (s t u : property X) : s ∪ (t ∩ u) = (s ∪ t) ∩ (s ∪ u) := --ext (take x, !or.left_distrib) --theorem union_distrib_right (s t u : property X) : (s ∩ t) ∪ u = (s ∪ u) ∩ (t ∪ u) := --ext (take x, !or.right_distrib) /- property-builder notation -/ -- {x : X | P} definition property_of (P : X → Prop) : property X := P notation `{` binder ` | ` r:(scoped:1 P, property_of P) `}` := r theorem mem_property_of {P : X → Prop} {a : X} (h : P a) : a ∈ {x | P x} := h theorem of_mem_property_of {P : X → Prop} {a : X} (h : a ∈ {x | P x}) : P a := h -- {x ∈ s | P} definition sep (P : X → Prop) (s : property X) : property X := λx, x ∈ s ∧ P x notation `{` binder ` ∈ ` s ` | ` r:(scoped:1 p, sep p s) `}` := r /- insert -/ definition insert (x : X) (a : property X) : property X := {y : X | y = x ∨ y ∈ a} abbreviation insert_same_level.{u} := @insert.{u u} -- '{x, y, z} notation `'{`:max a:(foldr `, ` (x b, insert_same_level x b) ∅) `}`:0 := a theorem subproperty_insert (x : X) (a : property X) : a ⊆ insert x a := take y, assume ys, or.inr ys theorem mem_insert (x : X) (s : property X) : x ∈ insert x s := or.inl rfl theorem mem_insert_of_mem {x : X} {s : property X} (y : X) : x ∈ s → x ∈ insert y s := assume h, or.inr h theorem eq_or_mem_of_mem_insert {x a : X} {s : property X} : x ∈ insert a s → x = a ∨ x ∈ s := assume h, h /- singleton -/ open trunc_index theorem mem_singleton_iff {X : Type} [is_set X] (a b : X) : a ∈ '{b} ↔ a = b := iff.intro (assume ainb, or.elim ainb (λ aeqb, aeqb) (λ f, false.elim f)) (assume aeqb, or.inl aeqb) theorem mem_singleton (a : X) : a ∈ '{a} := !mem_insert theorem eq_of_mem_singleton {X : Type} [is_set X] {x y : X} (h : x ∈ '{y}) : x = y := or.elim (eq_or_mem_of_mem_insert h) (suppose x = y, this) (suppose x ∈ ∅, absurd this (not_mem_empty x)) theorem mem_singleton_of_eq {x y : X} (H : x = y) : x ∈ '{y} := eq.symm H ▸ mem_singleton y /- theorem insert_eq (x : X) (s : property X) : insert x s = '{x} ∪ s := ext (take y, iff.intro (suppose y ∈ insert x s, or.elim this (suppose y = x, or.inl (or.inl this)) (suppose y ∈ s, or.inr this)) (suppose y ∈ '{x} ∪ s, or.elim this (suppose y ∈ '{x}, or.inl (eq_of_mem_singleton this)) (suppose y ∈ s, or.inr this))) -/ /- theorem pair_eq_singleton (a : X) : '{a, a} = '{a} := by rewrite [insert_eq_of_mem !mem_singleton] -/ /- theorem singleton_ne_empty (a : X) : '{a} ≠ ∅ := begin intro H, apply not_mem_empty a, rewrite -H, apply mem_insert end -/ end property