-- Authors: Floris van Doorn import homotopy.smash ..move_to_lib .pushout homotopy.red_susp open bool pointed eq equiv is_equiv sum bool prod unit circle cofiber prod.ops wedge is_trunc function red_susp unit /- To prove: Σ(X × Y) ≃ ΣX ∨ ΣY ∨ Σ(X ∧ Y) (?) (notation means suspension, wedge, smash) -/ /- To prove: Σ(X ∧ Y) ≃ X ★ Y (?) (notation means suspension, smash, join) -/ /- To prove: associative, A ∧ S¹ ≃ ΣA -/ variables {A B C D E F : Type*} namespace smash section open pushout definition smash_functor' [unfold 7] (f : A →* C) (g : B →* D) : A ∧ B → C ∧ D := begin fapply pushout.functor, { exact sum_functor f g }, { exact prod_functor f g }, { exact id }, { intro v, induction v with a b, exact prod_eq idp (respect_pt g), exact prod_eq (respect_pt f) idp }, { intro v, induction v with a b: reflexivity } end definition smash_functor [constructor] (f : A →* C) (g : B →* D) : A ∧ B →* C ∧ D := begin fapply pmap.mk, { exact smash_functor' f g }, { exact ap inl (prod_eq (respect_pt f) (respect_pt g)) }, end definition functor_gluel (f : A →* C) (g : B →* D) (a : A) : ap (smash_functor f g) (gluel a) = ap (smash.mk (f a)) (respect_pt g) ⬝ gluel (f a) := begin refine !pushout.elim_glue ⬝ _, esimp, apply whisker_right, induction D with D d₀, induction g with g g₀, esimp at *, induction g₀, reflexivity end definition functor_gluer (f : A →* C) (g : B →* D) (b : B) : ap (smash_functor f g) (gluer b) = ap (λc, smash.mk c (g b)) (respect_pt f) ⬝ gluer (g b) := begin refine !pushout.elim_glue ⬝ _, esimp, apply whisker_right, induction C with C c₀, induction f with f f₀, esimp at *, induction f₀, reflexivity end definition functor_gluel' (f : A →* C) (g : B →* D) (a a' : A) : ap (smash_functor f g) (gluel' a a') = ap (smash.mk (f a)) (respect_pt g) ⬝ gluel' (f a) (f a') ⬝ (ap (smash.mk (f a')) (respect_pt g))⁻¹ := begin refine !ap_con ⬝ !functor_gluel ◾ (!ap_inv ⬝ !functor_gluel⁻²) ⬝ _, refine whisker_left _ !con_inv ⬝ _, refine !con.assoc⁻¹ ⬝ _, apply whisker_right, apply con.assoc end definition functor_gluer' (f : A →* C) (g : B →* D) (b b' : B) : ap (smash_functor f g) (gluer' b b') = ap (λc, smash.mk c (g b)) (respect_pt f) ⬝ gluer' (g b) (g b') ⬝ (ap (λc, smash.mk c (g b')) (respect_pt f))⁻¹ := begin refine !ap_con ⬝ whisker_left _ !ap_inv ⬝ _, refine !functor_gluer ◾ !functor_gluer⁻² ⬝ _, refine whisker_left _ !con_inv ⬝ _, refine !con.assoc⁻¹ ⬝ _, apply whisker_right, apply con.assoc end /- the statements of the above rules becomes easier if one of the functions respects the basepoint by reflexivity -/ definition functor_gluel'2 {D : Type} (f : A →* C) (g : B → D) (a a' : A) : ap (smash_functor f (pmap_of_map g pt)) (gluel' a a') = gluel' (f a) (f a') := begin refine !ap_con ⬝ whisker_left _ !ap_inv ⬝ _, refine (!functor_gluel ⬝ !idp_con) ◾ (!functor_gluel ⬝ !idp_con)⁻² end definition functor_gluer'2 {C : Type} (f : A → C) (g : B →* D) (b b' : B) : ap (smash_functor (pmap_of_map f pt) g) (gluer' b b') = gluer' (g b) (g b') := begin refine !ap_con ⬝ whisker_left _ !ap_inv ⬝ _, refine (!functor_gluer ⬝ !idp_con) ◾ (!functor_gluer ⬝ !idp_con)⁻² end lemma functor_gluel'2_same {D : Type} (f : A →* C) (g : B → D) (a : A) : functor_gluel'2 f (pmap_of_map g pt) a a = ap02 (smash_functor f (pmap_of_map g pt)) (con.right_inv (gluel a)) ⬝ (con.right_inv (gluel (f a)))⁻¹ := begin refine _ ⬝ whisker_right _ (eq_top_of_square (!ap_con_right_inv_sq))⁻¹, refine _ ⬝ whisker_right _ !con_idp⁻¹, refine _ ⬝ !con.assoc⁻¹, apply whisker_left, apply eq_con_inv_of_con_eq, symmetry, apply con_right_inv_natural end lemma functor_gluer'2_same {C : Type} (f : A → C) (g : B →* D) (b : B) : functor_gluer'2 (pmap_of_map f pt) g b b = ap02 (smash_functor (pmap_of_map f pt) g) (con.right_inv (gluer b)) ⬝ (con.right_inv (gluer (g b)))⁻¹ := begin refine _ ⬝ whisker_right _ (eq_top_of_square (!ap_con_right_inv_sq))⁻¹, refine _ ⬝ whisker_right _ !con_idp⁻¹, refine _ ⬝ !con.assoc⁻¹, apply whisker_left, apply eq_con_inv_of_con_eq, symmetry, apply con_right_inv_natural end definition smash_functor_pcompose_homotopy (f' : C →* E) (f : A →* C) (g' : D →* F) (g : B →* D) : smash_functor (f' ∘* f) (g' ∘* g) ~ smash_functor f' g' ∘* smash_functor f g := begin intro x, induction x with a b a b, { reflexivity }, { reflexivity }, { reflexivity }, { apply eq_pathover, apply hdeg_square, refine !functor_gluel ⬝ _ ⬝ (ap_compose (smash_functor f' g') _ _)⁻¹, refine whisker_right _ !ap_con ⬝ !con.assoc ⬝ _ ⬝ ap02 _ !functor_gluel⁻¹, refine (!ap_compose'⁻¹ ⬝ !ap_compose') ◾ proof !functor_gluel⁻¹ qed ⬝ !ap_con⁻¹, }, { apply eq_pathover, apply hdeg_square, refine !functor_gluer ⬝ _ ⬝ (ap_compose (smash_functor f' g') _ _)⁻¹, refine whisker_right _ !ap_con ⬝ !con.assoc ⬝ _ ⬝ ap02 _ !functor_gluer⁻¹, refine (!ap_compose'⁻¹ ⬝ !ap_compose') ◾ proof !functor_gluer⁻¹ qed ⬝ !ap_con⁻¹, } end definition smash_functor_pcompose [constructor] (f' : C →* E) (f : A →* C) (g' : D →* F) (g : B →* D) : smash_functor (f' ∘* f) (g' ∘* g) ~* smash_functor f' g' ∘* smash_functor f g := begin fapply phomotopy.mk, { exact smash_functor_pcompose_homotopy f' f g' g }, { exact abstract begin induction C, induction D, induction E, induction F, induction f with f f₀, induction f' with f' f'₀, induction g with g g₀, induction g' with g' g'₀, esimp at *, induction f₀, induction f'₀, induction g₀, induction g'₀, reflexivity end end } end definition smash_functor_phomotopy [constructor] {f f' : A →* C} {g g' : B →* D} (h₁ : f ~* f') (h₂ : g ~* g') : smash_functor f g ~* smash_functor f' g' := begin induction h₁ using phomotopy_rec_on_idp, induction h₂ using phomotopy_rec_on_idp, reflexivity -- fapply phomotopy.mk, -- { intro x, induction x with a b a b, -- { exact ap011 smash.mk (h₁ a) (h₂ b) }, -- { reflexivity }, -- { reflexivity }, -- { apply eq_pathover, -- refine !functor_gluel ⬝ph _ ⬝hp !functor_gluel⁻¹, exact sorry }, -- { apply eq_pathover, -- refine !functor_gluer ⬝ph _ ⬝hp !functor_gluer⁻¹, exact sorry }}, -- { esimp, } end definition smash_functor_phomotopy_refl [constructor] (f : A →* C) (g : B →* D) : smash_functor_phomotopy (phomotopy.refl f) (phomotopy.refl g) = phomotopy.rfl := !phomotopy_rec_on_idp_refl ⬝ !phomotopy_rec_on_idp_refl definition smash_functor_pid [constructor] (A B : Type*) : smash_functor (pid A) (pid B) ~* pid (A ∧ B) := begin fapply phomotopy.mk, { intro x, induction x with a b a b, { reflexivity }, { reflexivity }, { reflexivity }, { apply eq_pathover_id_right, apply hdeg_square, exact !functor_gluel ⬝ !idp_con }, { apply eq_pathover_id_right, apply hdeg_square, exact !functor_gluer ⬝ !idp_con }}, { reflexivity } end definition smash_functor_pid_pcompose [constructor] (A : Type*) (g' : C →* D) (g : B →* C) : smash_functor (pid A) (g' ∘* g) ~* smash_functor (pid A) g' ∘* smash_functor (pid A) g := smash_functor_phomotopy !pid_pcompose⁻¹* phomotopy.rfl ⬝* !smash_functor_pcompose definition smash_functor_pcompose_pid [constructor] (B : Type*) (f' : C →* D) (f : A →* C) : smash_functor (f' ∘* f) (pid B) ~* smash_functor f' (pid B) ∘* smash_functor f (pid B) := smash_functor_phomotopy phomotopy.rfl !pid_pcompose⁻¹* ⬝* !smash_functor_pcompose definition smash_pequiv_smash [constructor] (f : A ≃* C) (g : B ≃* D) : A ∧ B ≃* C ∧ D := begin fapply pequiv_of_pmap (smash_functor f g), apply pushout.is_equiv_functor, exact to_is_equiv (sum_equiv_sum f g) end end definition smash_pequiv_smash_left [constructor] (B : Type*) (f : A ≃* C) : A ∧ B ≃* C ∧ B := smash_pequiv_smash f pequiv.rfl definition smash_pequiv_smash_right [constructor] (A : Type*) (g : B ≃* D) : A ∧ B ≃* A ∧ D := smash_pequiv_smash pequiv.rfl g /- smash A B ≃ pcofiber (pprod_of_pwedge A B) -/ definition elim_gluel' {P : Type} {Pmk : Πa b, P} {Pl Pr : P} (Pgl : Πa : A, Pmk a pt = Pl) (Pgr : Πb : B, Pmk pt b = Pr) (a a' : A) : ap (smash.elim Pmk Pl Pr Pgl Pgr) (gluel' a a') = Pgl a ⬝ (Pgl a')⁻¹ := !ap_con ⬝ whisker_left _ !ap_inv ⬝ !elim_gluel ◾ !elim_gluel⁻² definition elim_gluer' {P : Type} {Pmk : Πa b, P} {Pl Pr : P} (Pgl : Πa : A, Pmk a pt = Pl) (Pgr : Πb : B, Pmk pt b = Pr) (b b' : B) : ap (smash.elim Pmk Pl Pr Pgl Pgr) (gluer' b b') = Pgr b ⬝ (Pgr b')⁻¹ := !ap_con ⬝ whisker_left _ !ap_inv ⬝ !elim_gluer ◾ !elim_gluer⁻² definition elim_gluel'_same {P : Type} {Pmk : Πa b, P} {Pl Pr : P} (Pgl : Πa : A, Pmk a pt = Pl) (Pgr : Πb : B, Pmk pt b = Pr) (a : A) : elim_gluel' Pgl Pgr a a = ap02 (smash.elim Pmk Pl Pr Pgl Pgr) (con.right_inv (gluel a)) ⬝ (con.right_inv (Pgl a))⁻¹ := begin refine _ ⬝ whisker_right _ (eq_top_of_square (!ap_con_right_inv_sq))⁻¹, refine _ ⬝ whisker_right _ !con_idp⁻¹, refine _ ⬝ !con.assoc⁻¹, apply whisker_left, apply eq_con_inv_of_con_eq, symmetry, apply con_right_inv_natural end definition elim_gluer'_same {P : Type} {Pmk : Πa b, P} {Pl Pr : P} (Pgl : Πa : A, Pmk a pt = Pl) (Pgr : Πb : B, Pmk pt b = Pr) (b : B) : elim_gluer' Pgl Pgr b b = ap02 (smash.elim Pmk Pl Pr Pgl Pgr) (con.right_inv (gluer b)) ⬝ (con.right_inv (Pgr b))⁻¹ := begin refine _ ⬝ whisker_right _ (eq_top_of_square (!ap_con_right_inv_sq))⁻¹, refine _ ⬝ whisker_right _ !con_idp⁻¹, refine _ ⬝ !con.assoc⁻¹, apply whisker_left, apply eq_con_inv_of_con_eq, symmetry, apply con_right_inv_natural end definition elim'_gluel'_pt {P : Type} {Pmk : Πa b, P} (Pgl : Πa : A, Pmk a pt = Pmk pt pt) (Pgr : Πb : B, Pmk pt b = Pmk pt pt) (a : A) (ql : Pgl pt = idp) (qr : Pgr pt = idp) : ap (smash.elim' Pmk Pgl Pgr ql qr) (gluel' a pt) = Pgl a := !elim_gluel' ⬝ whisker_left _ ql⁻² definition elim'_gluer'_pt {P : Type} {Pmk : Πa b, P} (Pgl : Πa : A, Pmk a pt = Pmk pt pt) (Pgr : Πb : B, Pmk pt b = Pmk pt pt) (b : B) (ql : Pgl pt = idp) (qr : Pgr pt = idp) : ap (smash.elim' Pmk Pgl Pgr ql qr) (gluer' b pt) = Pgr b := !elim_gluer' ⬝ whisker_left _ qr⁻² definition prod_of_wedge [unfold 3] (v : pwedge A B) : A × B := begin induction v with a b , { exact (a, pt) }, { exact (pt, b) }, { reflexivity } end definition wedge_of_sum [unfold 3] (v : A + B) : pwedge A B := begin induction v with a b, { exact pushout.inl a }, { exact pushout.inr b } end definition prod_of_wedge_of_sum [unfold 3] (v : A + B) : prod_of_wedge (wedge_of_sum v) = prod_of_sum v := begin induction v with a b, { reflexivity }, { reflexivity } end end smash open smash namespace pushout definition eq_inl_pushout_wedge_of_sum [unfold 3] (v : pwedge A B) : inl pt = inl v :> pushout wedge_of_sum bool_of_sum := begin induction v with a b, { exact glue (sum.inl pt) ⬝ (glue (sum.inl a))⁻¹, }, { exact ap inl (glue ⋆) ⬝ glue (sum.inr pt) ⬝ (glue (sum.inr b))⁻¹, }, { apply eq_pathover_constant_left, refine !con.right_inv ⬝pv _ ⬝vp !con_inv_cancel_right⁻¹, exact square_of_eq idp } end variables (A B) definition eq_inr_pushout_wedge_of_sum [unfold 3] (b : bool) : inl pt = inr b :> pushout (@wedge_of_sum A B) bool_of_sum := begin induction b, { exact glue (sum.inl pt) }, { exact ap inl (glue ⋆) ⬝ glue (sum.inr pt) } end definition is_contr_pushout_wedge_of_sum : is_contr (pushout (@wedge_of_sum A B) bool_of_sum) := begin apply is_contr.mk (pushout.inl pt), intro x, induction x with v b w, { apply eq_inl_pushout_wedge_of_sum }, { apply eq_inr_pushout_wedge_of_sum }, { apply eq_pathover_constant_left_id_right, induction w with a b, { apply whisker_rt, exact vrfl }, { apply whisker_rt, exact vrfl }} end definition bool_of_sum_of_bool {A B : Type*} (b : bool) : bool_of_sum (sum_of_bool A B b) = b := by induction b: reflexivity /- a different proof, using pushout lemmas, and the fact that the wedge is the pushout of A + B <-- 2 --> 1 -/ definition pushout_wedge_of_sum_equiv_unit : pushout (@wedge_of_sum A B) bool_of_sum ≃ unit := begin refine pushout_hcompose_equiv (sum_of_bool A B) (wedge_equiv_pushout_sum A B) _ _ ⬝e _, exact erfl, intro x, induction x, reflexivity, reflexivity, exact bool_of_sum_of_bool, apply pushout_of_equiv_right end end pushout open pushout namespace smash variables (A B) definition smash_punit_pequiv [constructor] : smash A punit ≃* punit := begin fapply pequiv_of_equiv, { fapply equiv.MK, { exact λx, ⋆ }, { exact λx, pt }, { intro x, induction x, reflexivity }, { exact abstract begin intro x, induction x, { induction b, exact gluel' pt a }, { exact gluel pt }, { exact gluer pt }, { apply eq_pathover_constant_left_id_right, apply square_of_eq_top, exact whisker_right _ !idp_con⁻¹ }, { apply eq_pathover_constant_left_id_right, induction b, refine !con.right_inv ⬝pv _, exact square_of_eq idp } end end }}, { reflexivity } end definition smash_equiv_cofiber : smash A B ≃ cofiber (@prod_of_wedge A B) := begin unfold [smash, cofiber, smash'], symmetry, refine !pushout.symm ⬝e _, fapply pushout_vcompose_equiv wedge_of_sum, { symmetry, apply equiv_unit_of_is_contr, apply is_contr_pushout_wedge_of_sum }, { intro x, reflexivity }, { apply prod_of_wedge_of_sum } end definition pprod_of_pwedge [constructor] : pwedge A B →* A ×* B := begin fconstructor, { exact prod_of_wedge }, { reflexivity } end definition smash_pequiv_pcofiber [constructor] : smash A B ≃* pcofiber (pprod_of_pwedge A B) := begin apply pequiv_of_equiv (smash_equiv_cofiber A B), exact (cofiber.glue pt)⁻¹ end variables {A B} /- commutativity -/ definition smash_flip [unfold 3] (x : smash A B) : smash B A := begin induction x, { exact smash.mk b a }, { exact auxr }, { exact auxl }, { exact gluer a }, { exact gluel b } end definition smash_flip_smash_flip [unfold 3] (x : smash A B) : smash_flip (smash_flip x) = x := begin induction x, { reflexivity }, { reflexivity }, { reflexivity }, { apply eq_pathover_id_right, refine ap_compose' smash_flip _ _ ⬝ ap02 _ !elim_gluel ⬝ !elim_gluer ⬝ph _, apply hrfl }, { apply eq_pathover_id_right, refine ap_compose' smash_flip _ _ ⬝ ap02 _ !elim_gluer ⬝ !elim_gluel ⬝ph _, apply hrfl } end variables (A B) definition smash_comm [constructor] : smash A B ≃* smash B A := begin fapply pequiv_of_equiv, { apply equiv.MK, do 2 exact smash_flip_smash_flip }, { reflexivity } end variables {A B} /- smash A S¹ = red_susp A -/ definition circle_elim_constant [unfold 5] {A : Type} {a : A} {p : a = a} (r : p = idp) (x : S¹) : circle.elim a p x = a := begin induction x, { reflexivity }, { apply eq_pathover_constant_right, apply hdeg_square, exact !elim_loop ⬝ r } end definition red_susp_of_smash_pcircle [unfold 2] (x : smash A S¹*) : red_susp A := begin induction x using smash.elim, { induction b, exact base, exact equator a }, { exact base }, { exact base }, { reflexivity }, { exact circle_elim_constant equator_pt b } end definition smash_pcircle_of_red_susp [unfold 2] (x : red_susp A) : smash A S¹* := begin induction x, { exact pt }, { exact gluel' pt a ⬝ ap (smash.mk a) loop ⬝ gluel' a pt }, { refine !con.right_inv ◾ _ ◾ !con.right_inv, exact ap_is_constant gluer loop ⬝ !con.right_inv } end exit definition smash_pcircle_of_red_susp_of_smash_pcircle_pt [unfold 3] (a : A) (x : S¹*) : smash_pcircle_of_red_susp (red_susp_of_smash_pcircle (smash.mk a x)) = smash.mk a x := begin induction x, { exact gluel' pt a }, { exact abstract begin apply eq_pathover, refine ap_compose smash_pcircle_of_red_susp _ _ ⬝ph _, refine ap02 _ (elim_loop pt (equator a)) ⬝ !elim_equator ⬝ph _, -- make everything below this a lemma defined by path induction? refine !con_idp⁻¹ ⬝pv _, refine !con.assoc⁻¹ ⬝ph _, apply whisker_bl, apply whisker_lb, apply whisker_tl, apply hrfl end end } end definition concat2o [unfold 10] {A B : Type} {f g h : A → B} {q : f ~ g} {r : g ~ h} {a a' : A} {p : a = a'} (s : q a =[p] q a') (t : r a =[p] r a') : q a ⬝ r a =[p] q a' ⬝ r a' := by induction p; exact idpo definition apd_con_fn [unfold 10] {A B : Type} {f g h : A → B} {q : f ~ g} {r : g ~ h} {a a' : A} (p : a = a') : apd (λa, q a ⬝ r a) p = concat2o (apd q p) (apd r p) := by induction p; reflexivity -- definition apd_con_fn_constant [unfold 10] {A B : Type} {f : A → B} {b b' : B} {q : Πa, f a = b} -- {r : b = b'} {a a' : A} (p : a = a') : -- apd (λa, q a ⬝ r) p = concat2o (apd q p) (pathover_of_eq _ idp) := -- by induction p; reflexivity theorem apd_constant' {A A' : Type} {B : A' → Type} {a₁ a₂ : A} {a' : A'} (b : B a') (p : a₁ = a₂) : apd (λx, b) p = pathover_of_eq p idp := by induction p; reflexivity definition smash_pcircle_pequiv_red [constructor] (A : Type*) : smash A S¹* ≃* red_susp A := begin fapply pequiv_of_equiv, { fapply equiv.MK, { exact red_susp_of_smash_pcircle }, { exact smash_pcircle_of_red_susp }, { exact abstract begin intro x, induction x, { reflexivity }, { apply eq_pathover, apply hdeg_square, refine ap_compose red_susp_of_smash_pcircle _ _ ⬝ ap02 _ !elim_equator ⬝ _ ⬝ !ap_id⁻¹, refine !ap_con ⬝ (!ap_con ⬝ !elim_gluel' ◾ !ap_compose'⁻¹) ◾ !elim_gluel' ⬝ _, esimp, exact !idp_con ⬝ !elim_loop }, { exact sorry } end end }, { intro x, induction x, { exact smash_pcircle_of_red_susp_of_smash_pcircle_pt a b }, { exact gluel pt }, { exact gluer pt }, { apply eq_pathover_id_right, refine ap_compose smash_pcircle_of_red_susp _ _ ⬝ph _, unfold [red_susp_of_smash_pcircle], refine ap02 _ !elim_gluel ⬝ph _, esimp, apply whisker_rt, exact vrfl }, { apply eq_pathover_id_right, refine ap_compose smash_pcircle_of_red_susp _ _ ⬝ph _, unfold [red_susp_of_smash_pcircle], -- not sure why so many implicit arguments are needed here... refine ap02 _ (@smash.elim_gluer A S¹* _ (λa, circle.elim red_susp.base (equator a)) red_susp.base red_susp.base (λa, refl red_susp.base) (circle_elim_constant equator_pt) b) ⬝ph _, apply square_of_eq, induction b, { exact whisker_right _ !con.right_inv }, { apply eq_pathover_dep, refine !apd_con_fn ⬝pho _ ⬝hop !apd_con_fn⁻¹, refine ap (λx, concat2o x _) !rec_loop ⬝pho _ ⬝hop (ap011 concat2o (apd_compose1 (λa b, ap smash_pcircle_of_red_susp b) (circle_elim_constant equator_pt) loop) !apd_constant')⁻¹, exact sorry } }}}, { reflexivity } end /- smash A S¹ = susp A -/ open susp definition psusp_of_smash_pcircle [unfold 2] (x : smash A S¹*) : psusp A := begin induction x using smash.elim, { induction b, exact pt, exact merid a ⬝ (merid pt)⁻¹ }, { exact pt }, { exact pt }, { reflexivity }, { induction b, reflexivity, apply eq_pathover_constant_right, apply hdeg_square, exact !elim_loop ⬝ !con.right_inv } end definition smash_pcircle_of_psusp [unfold 2] (x : psusp A) : smash A S¹* := begin induction x, { exact pt }, { exact pt }, { exact gluel' pt a ⬝ (ap (smash.mk a) loop ⬝ gluel' a pt) }, end -- the definitions below compile, but take a long time to do so and have sorry's in them definition smash_pcircle_of_psusp_of_smash_pcircle_pt [unfold 3] (a : A) (x : S¹*) : smash_pcircle_of_psusp (psusp_of_smash_pcircle (smash.mk a x)) = smash.mk a x := begin induction x, { exact gluel' pt a }, { exact abstract begin apply eq_pathover, refine ap_compose smash_pcircle_of_psusp _ _ ⬝ph _, refine ap02 _ (elim_loop north (merid a ⬝ (merid pt)⁻¹)) ⬝ph _, refine !ap_con ⬝ (!elim_merid ◾ (!ap_inv ⬝ !elim_merid⁻²)) ⬝ph _, -- make everything below this a lemma defined by path induction? exact sorry, -- refine !con_idp⁻¹ ⬝pv _, apply whisker_tl, refine !con.assoc⁻¹ ⬝ph _, -- apply whisker_bl, apply whisker_lb, -- refine !con_idp⁻¹ ⬝pv _, apply whisker_tl, apply hrfl -- refine !con_idp⁻¹ ⬝pv _, apply whisker_tl, -- refine !con.assoc⁻¹ ⬝ph _, apply whisker_bl, apply whisker_lb, apply hrfl -- apply square_of_eq, rewrite [+con.assoc], apply whisker_left, apply whisker_left, -- symmetry, apply con_eq_of_eq_inv_con, esimp, apply con_eq_of_eq_con_inv, -- refine _⁻² ⬝ !con_inv, refine _ ⬝ !con.assoc, -- refine _ ⬝ whisker_right _ !inv_con_cancel_right⁻¹, refine _ ⬝ !con.right_inv⁻¹, -- refine !con.right_inv ◾ _, refine _ ◾ !con.right_inv, -- refine !ap_mk_right ⬝ !con.right_inv end end } end -- definition smash_pcircle_of_psusp_of_smash_pcircle_gluer_base (b : S¹*) -- : square (smash_pcircle_of_psusp_of_smash_pcircle_pt (Point A) b) -- (gluer pt) -- (ap smash_pcircle_of_psusp (ap (λ a, psusp_of_smash_pcircle a) (gluer b))) -- (gluer b) := -- begin -- refine ap02 _ !elim_gluer ⬝ph _, -- induction b, -- { apply square_of_eq, exact whisker_right _ !con.right_inv }, -- { apply square_pathover', exact sorry } -- end exit definition smash_pcircle_pequiv [constructor] (A : Type*) : smash A S¹* ≃* psusp A := begin fapply pequiv_of_equiv, { fapply equiv.MK, { exact psusp_of_smash_pcircle }, { exact smash_pcircle_of_psusp }, { exact abstract begin intro x, induction x, { reflexivity }, { exact merid pt }, { apply eq_pathover_id_right, refine ap_compose psusp_of_smash_pcircle _ _ ⬝ph _, refine ap02 _ !elim_merid ⬝ph _, rewrite [↑gluel', +ap_con, +ap_inv, -ap_compose'], refine (_ ◾ _⁻² ◾ _ ◾ (_ ◾ _⁻²)) ⬝ph _, rotate 5, do 2 (unfold [psusp_of_smash_pcircle]; apply elim_gluel), esimp, apply elim_loop, do 2 (unfold [psusp_of_smash_pcircle]; apply elim_gluel), refine idp_con (merid a ⬝ (merid (Point A))⁻¹) ⬝ph _, apply square_of_eq, refine !idp_con ⬝ _⁻¹, apply inv_con_cancel_right } end end }, { intro x, induction x using smash.rec, { exact smash_pcircle_of_psusp_of_smash_pcircle_pt a b }, { exact gluel pt }, { exact gluer pt }, { apply eq_pathover_id_right, refine ap_compose smash_pcircle_of_psusp _ _ ⬝ph _, unfold [psusp_of_smash_pcircle], refine ap02 _ !elim_gluel ⬝ph _, esimp, apply whisker_rt, exact vrfl }, { apply eq_pathover_id_right, refine ap_compose smash_pcircle_of_psusp _ _ ⬝ph _, unfold [psusp_of_smash_pcircle], refine ap02 _ !elim_gluer ⬝ph _, induction b, { apply square_of_eq, exact whisker_right _ !con.right_inv }, { exact sorry} }}}, { reflexivity } end end smash