/- Copyright (c) 2016 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn -/ import .LES_of_homotopy_groups homotopy.connectedness homotopy.homotopy_group homotopy.join homotopy.complex_hopf open eq is_trunc pointed is_conn is_equiv fiber equiv trunc nat chain_complex fin algebra group trunc_index function join pushout prod sigma sigma.ops namespace nat open sigma sum definition eq_even_or_eq_odd (n : ℕ) : (Σk, 2 * k = n) ⊎ (Σk, 2 * k + 1 = n) := begin induction n with n IH, { exact inl ⟨0, idp⟩}, { induction IH with H H: induction H with k p: induction p, { exact inr ⟨k, idp⟩}, { refine inl ⟨k+1, idp⟩}} end definition rec_on_even_odd {P : ℕ → Type} (n : ℕ) (H : Πk, P (2 * k)) (H2 : Πk, P (2 * k + 1)) : P n := begin cases eq_even_or_eq_odd n with v v: induction v with k p: induction p, { exact H k}, { exact H2 k} end end nat open nat namespace pointed definition apn_phomotopy {A B : Type*} {f g : A →* B} (n : ℕ) (p : f ~* g) : apn n f ~* apn n g := begin induction n with n IH, { exact p}, { exact ap1_phomotopy IH} end end pointed open pointed namespace chain_complex section universe variable u parameters {F X Y : pType.{u}} (f : X →* Y) (g : F →* X) (e : pfiber f ≃* F) (p : ppoint f ~* g ∘* e) include f p open succ_str definition fibration_sequence_car [reducible] : +3ℕ → Type* | (n, fin.mk 0 H) := Ω[n] Y | (n, fin.mk 1 H) := Ω[n] X | (n, fin.mk k H) := Ω[n] F definition fibration_sequence_fun : Π(n : +3ℕ), fibration_sequence_car (S n) →* fibration_sequence_car n | (n, fin.mk 0 H) := proof Ω→[n] f qed | (n, fin.mk 1 H) := proof Ω→[n] g qed | (n, fin.mk 2 H) := proof Ω→[n] (e ∘* boundary_map f) ∘* pcast (loop_space_succ_eq_in Y n) qed | (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end definition fibration_sequence_pequiv : Π(x : +3ℕ), loop_spaces2 f x ≃* fibration_sequence_car x | (n, fin.mk 0 H) := by reflexivity | (n, fin.mk 1 H) := by reflexivity | (n, fin.mk 2 H) := loopn_pequiv_loopn n e | (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end /- all cases where n>0 are basically the same -/ definition fibration_sequence_fun_phomotopy : Π(x : +3ℕ), fibration_sequence_pequiv x ∘* loop_spaces_fun2 f x ~* (fibration_sequence_fun x ∘* fibration_sequence_pequiv (S x)) | (n, fin.mk 0 H) := by reflexivity | (n, fin.mk 1 H) := begin refine !pid_comp ⬝* _, refine apn_phomotopy n p ⬝* _, refine !apn_compose ⬝* _, reflexivity end | (n, fin.mk 2 H) := begin refine !passoc⁻¹* ⬝* _ ⬝* !comp_pid⁻¹*, apply pwhisker_right, refine _ ⬝* !apn_compose⁻¹*, reflexivity end | (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end definition type_fibration_sequence [constructor] : type_chain_complex +3ℕ := transfer_type_chain_complex (LES_of_loop_spaces2 f) fibration_sequence_fun fibration_sequence_pequiv fibration_sequence_fun_phomotopy definition is_exact_type_fibration_sequence : is_exact_t type_fibration_sequence := begin intro n, apply is_exact_at_t_transfer, apply is_exact_LES_of_loop_spaces2 end definition fibration_sequence [constructor] : chain_complex +3ℕ := trunc_chain_complex type_fibration_sequence end end chain_complex namespace is_conn local attribute comm_group.to_group [coercion] local attribute is_equiv_tinverse [instance] theorem is_equiv_π_of_is_connected.{u} {A B : pType.{u}} (n k : ℕ) (f : A →* B) [H : is_conn_fun n f] (H2 : k ≤ n) : is_equiv (π→[k] f) := begin cases k with k, { /- k = 0 -/ change (is_equiv (trunc_functor 0 f)), apply is_equiv_trunc_functor_of_is_conn_fun, refine is_conn_fun_of_le f (zero_le_of_nat n)}, { /- k > 0 -/ have H2' : k ≤ n, from le.trans !self_le_succ H2, exact @is_equiv_of_trivial _ (LES_of_homotopy_groups f) _ (is_exact_LES_of_homotopy_groups f (k, 2)) (is_exact_LES_of_homotopy_groups f (succ k, 0)) (@is_contr_HG_fiber_of_is_connected A B k n f H H2') (@is_contr_HG_fiber_of_is_connected A B (succ k) n f H H2) (@pgroup_of_group _ (group_LES_of_homotopy_groups f k 0) idp) (@pgroup_of_group _ (group_LES_of_homotopy_groups f k 1) idp) (homomorphism.struct (homomorphism_LES_of_homotopy_groups_fun f (k, 0)))}, end theorem is_surjective_π_of_is_connected.{u} {A B : pType.{u}} (n : ℕ) (f : A →* B) [H : is_conn_fun n f] : is_surjective (π→[n + 1] f) := @is_surjective_of_trivial _ (LES_of_homotopy_groups f) _ (is_exact_LES_of_homotopy_groups f (n, 2)) (@is_contr_HG_fiber_of_is_connected A B n n f H !le.refl) -- TODO: move and rename? definition natural_square2 {A B X : Type} {f : A → X} {g : B → X} (h : Πa b, f a = g b) {a a' : A} {b b' : B} (p : a = a') (q : b = b') : square (ap f p) (ap g q) (h a b) (h a' b') := by induction p; induction q; exact hrfl end is_conn namespace sigma definition ppr1 {A : Type*} {B : A → Type*} : (Σ*(x : A), B x) →* A := pmap.mk pr1 idp definition ppr2 {A : Type*} (B : A → Type*) (v : (Σ*(x : A), B x)) : B (ppr1 v) := pr2 v end sigma namespace hopf open sphere.ops susp circle sphere_index attribute hopf [unfold 4] -- definition phopf (x : psusp A) : Type* := -- pointed.MK (hopf A x) -- begin -- induction x with a: esimp, -- do 2 exact 1, -- apply pathover_of_tr_eq, rewrite [↑hopf, elim_type_merid, ▸*, mul_one], -- end -- maybe define this as a composition of pointed maps? definition complex_phopf [constructor] : S. 3 →* S. 2 := proof pmap.mk complex_hopf idp qed definition fiber_pr1_fun {A : Type} {B : A → Type} {a : A} (b : B a) : fiber_pr1 B a (fiber.mk ⟨a, b⟩ idp) = b := idp --TODO: in fiber.equiv_precompose, make f explicit open sphere sphere.ops definition add_plus_one_of_nat (n m : ℕ) : (n +1+ m) = sphere_index.of_nat (n + m + 1) := begin induction m with m IH, { reflexivity }, { exact ap succ IH} end -- definition pjoin_pspheres (n m : ℕ) : join (S. n) (S. m) ≃ (S. (n + m + 1)) := -- join.spheres n m ⬝e begin esimp, apply equiv_of_eq, apply ap S, apply add_plus_one_of_nat end definition part_of_complex_hopf : S (of_nat 3) → sigma (hopf S¹) := begin intro x, apply inv (hopf.total S¹), apply inv (join.spheres 1 1), exact x end definition part_of_complex_hopf_base2 : (part_of_complex_hopf (@sphere.base 3)).2 = circle.base := begin exact sorry end definition pfiber_complex_phopf : pfiber complex_phopf ≃* S. 1 := begin fapply pequiv_of_equiv, { esimp, unfold [complex_hopf], refine @fiber.equiv_precompose _ _ (sigma.pr1 ∘ (hopf.total S¹)⁻¹ᵉ) _ _ (join.spheres 1 1)⁻¹ᵉ _ ⬝e _, refine fiber.equiv_precompose (hopf.total S¹)⁻¹ᵉ ⬝e _, apply fiber_pr1}, { esimp, refine _ ⬝ part_of_complex_hopf_base2, apply fiber_pr1_fun} end open int definition one_le_succ (n : ℕ) : 1 ≤ succ n := nat.succ_le_succ !zero_le definition π2S2 : πg[1+1] (S. 2) = gℤ := begin refine _ ⬝ fundamental_group_of_circle, refine _ ⬝ ap (λx, π₁ x) (eq_of_pequiv pfiber_complex_phopf), fapply Group_eq, { fapply equiv.mk, { exact cc_to_fn (LES_of_homotopy_groups complex_phopf) (1, 2)}, { refine @is_equiv_of_trivial _ _ _ (is_exact_LES_of_homotopy_groups _ (1, 1)) (is_exact_LES_of_homotopy_groups _ (1, 2)) _ _ (@pgroup_of_group _ (group_LES_of_homotopy_groups complex_phopf _ _) idp) (@pgroup_of_group _ (group_LES_of_homotopy_groups complex_phopf _ _) idp) _, { rewrite [LES_of_homotopy_groups_1, ▸*], have H : 1 ≤[ℕ] 2, from !one_le_succ, apply trivial_homotopy_group_of_is_conn, exact H, rexact is_conn_psphere 3}, { refine tr_rev (λx, is_contr (ptrunctype._trans_of_to_pType x)) (LES_of_homotopy_groups_1 complex_phopf 2) _, apply trivial_homotopy_group_of_is_conn, apply le.refl, rexact is_conn_psphere 3}, { exact homomorphism.struct (homomorphism_LES_of_homotopy_groups_fun _ (0, 2))}}}, { exact homomorphism.struct (homomorphism_LES_of_homotopy_groups_fun _ (0, 2))} end open circle definition πnS3_eq_πnS2 (n : ℕ) : πg[n+2 +1] (S. 3) = πg[n+2 +1] (S. 2) := begin fapply Group_eq, { fapply equiv.mk, { exact cc_to_fn (LES_of_homotopy_groups complex_phopf) (n+3, 0)}, { have H : is_trunc 1 (pfiber complex_phopf), from @(is_trunc_equiv_closed_rev _ pfiber_complex_phopf) is_trunc_circle, refine @is_equiv_of_trivial _ _ _ (is_exact_LES_of_homotopy_groups _ (n+2, 2)) (is_exact_LES_of_homotopy_groups _ (n+3, 0)) _ _ (@pgroup_of_group _ (group_LES_of_homotopy_groups complex_phopf _ _) idp) (@pgroup_of_group _ (group_LES_of_homotopy_groups complex_phopf _ _) idp) _, { rewrite [▸*, LES_of_homotopy_groups_2 _ (n +[ℕ] 2)], have H : 1 ≤[ℕ] n + 1, from !one_le_succ, apply trivial_homotopy_group_of_is_trunc _ _ _ H}, { refine tr_rev (λx, is_contr (ptrunctype._trans_of_to_pType x)) (LES_of_homotopy_groups_2 complex_phopf _) _, have H : 1 ≤[ℕ] n + 2, from !one_le_succ, apply trivial_homotopy_group_of_is_trunc _ _ _ H}, { exact homomorphism.struct (homomorphism_LES_of_homotopy_groups_fun _ (n+2, 0))}}}, { exact homomorphism.struct (homomorphism_LES_of_homotopy_groups_fun _ (n+2, 0))} end end hopf