/- Copyright (c) 2016 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn -/ import types.int types.pointed types.trunc algebra.hott ..group_theory.basic .fin open eq pointed int unit is_equiv equiv is_trunc trunc function algebra group sigma.ops sum prod nat bool fin namespace eq definition transport_eq_Fl_idp_left {A B : Type} {a : A} {b : B} (f : A → B) (q : f a = b) : transport_eq_Fl idp q = !idp_con⁻¹ := by induction q; reflexivity definition whisker_left_idp_con_eq_assoc {A : Type} {a₁ a₂ a₃ : A} (p : a₁ = a₂) (q : a₂ = a₃) : whisker_left p (idp_con q)⁻¹ = con.assoc p idp q := by induction q; reflexivity end eq open eq structure succ_str : Type := (carrier : Type) (succ : carrier → carrier) attribute succ_str.carrier [coercion] definition succ_str.S {X : succ_str} : X → X := succ_str.succ X open succ_str definition snat [reducible] [constructor] : succ_str := succ_str.mk ℕ nat.succ definition snat' [reducible] [constructor] : succ_str := succ_str.mk ℕ nat.pred definition sint [reducible] [constructor] : succ_str := succ_str.mk ℤ int.succ definition sint' [reducible] [constructor] : succ_str := succ_str.mk ℤ int.pred notation `+ℕ` := snat notation `-ℕ` := snat' notation `+ℤ` := sint notation `-ℤ` := sint' definition stratified_type [reducible] (N : succ_str) (n : ℕ) : Type₀ := N × fin (succ n) definition stratified_succ {N : succ_str} {n : ℕ} (x : stratified_type N n) : stratified_type N n := (if val (pr2 x) = n then S (pr1 x) else pr1 x, my_succ (pr2 x)) definition stratified [reducible] [constructor] (N : succ_str) (n : ℕ) : succ_str := succ_str.mk (stratified_type N n) stratified_succ notation `+3ℕ` := stratified +ℕ 2 notation `-3ℕ` := stratified -ℕ 2 notation `+3ℤ` := stratified +ℤ 2 notation `-3ℤ` := stratified -ℤ 2 notation `+6ℕ` := stratified +ℕ 5 notation `-6ℕ` := stratified -ℕ 5 notation `+6ℤ` := stratified +ℤ 5 notation `-6ℤ` := stratified -ℤ 5 namespace chain_complex -- are chain complexes with the "set"-requirement removed interesting? structure type_chain_complex (N : succ_str) : Type := (car : N → Type*) (fn : Π(n : N), car (S n) →* car n) (is_chain_complex : Π(n : N) (x : car (S (S n))), fn n (fn (S n) x) = pt) section variables {N : succ_str} (X : type_chain_complex N) (n : N) definition tcc_to_car [unfold 2] [coercion] := @type_chain_complex.car definition tcc_to_fn [unfold 2] : X (S n) →* X n := type_chain_complex.fn X n definition tcc_is_chain_complex [unfold 2] : Π(x : X (S (S n))), tcc_to_fn X n (tcc_to_fn X (S n) x) = pt := type_chain_complex.is_chain_complex X n -- important: these notions are shifted by one! (this is to avoid transports) definition is_exact_at_t [reducible] /- X n -/ : Type := Π(x : X (S n)), tcc_to_fn X n x = pt → fiber (tcc_to_fn X (S n)) x definition is_exact_t [reducible] /- X -/ : Type := Π(n : N), is_exact_at_t X n -- definition type_chain_complex_from_left (X : type_chain_complex) : type_chain_complex := -- type_chain_complex.mk (int.rec X (λn, punit)) -- begin -- intro n, fconstructor, -- { induction n with n n, -- { exact @ltcc_to_fn X n}, -- { esimp, intro x, exact star}}, -- { induction n with n n, -- { apply respect_pt}, -- { reflexivity}} -- end -- begin -- intro n, induction n with n n, -- { exact ltcc_is_chain_complex X}, -- { esimp, intro x, reflexivity} -- end -- definition is_exact_t_from_left {X : type_chain_complex} {n : ℕ} (H : is_exact_at_lt X n) -- : is_exact_at_t (type_chain_complex_from_left X) n := -- H definition transfer_type_chain_complex [constructor] /- X -/ {Y : N → Type*} (g : Π{n : N}, Y (S n) →* Y n) (e : Π{n}, X n ≃* Y n) (p : Π{n} (x : X (S n)), e (tcc_to_fn X n x) = g (e x)) : type_chain_complex N := type_chain_complex.mk Y @g abstract begin intro n, apply equiv_rect (equiv_of_pequiv e), intro x, refine ap g (p x)⁻¹ ⬝ _, refine (p _)⁻¹ ⬝ _, refine ap e (tcc_is_chain_complex X n _) ⬝ _, apply respect_pt end end theorem is_exact_at_t_transfer {X : type_chain_complex N} {Y : N → Type*} {g : Π{n : N}, Y (S n) →* Y n} (e : Π{n}, X n ≃* Y n) (p : Π{n} (x : X (S n)), e (tcc_to_fn X n x) = g (e x)) {n : N} (H : is_exact_at_t X n) : is_exact_at_t (transfer_type_chain_complex X @g @e @p) n := begin intro y q, esimp at *, have H2 : tcc_to_fn X n (e⁻¹ᵉ* y) = pt, begin refine (inv_commute (λn, equiv_of_pequiv e) _ _ @p _)⁻¹ᵖ ⬝ _, refine ap _ q ⬝ _, exact respect_pt e⁻¹ᵉ* end, cases (H _ H2) with x r, refine fiber.mk (e x) _, refine (p x)⁻¹ ⬝ _, refine ap e r ⬝ _, apply right_inv end -- cancel automorphisms inside a long exact sequence definition type_chain_complex_cancel_aut [constructor] /- X -/ (g : Π{n : N}, X (S n) →* X n) (e : Π{n}, X n ≃* X n) (r : Π{n}, X n →* X n) (p : Π{n : N} (x : X (S n)), g (e x) = tcc_to_fn X n x) (pr : Π{n : N} (x : X (S n)), g x = r (g (e x))) : type_chain_complex N := type_chain_complex.mk X @g abstract begin have p' : Π{n : N} (x : X (S n)), g x = tcc_to_fn X n (e⁻¹ x), from λn, homotopy_inv_of_homotopy_pre e _ _ p, intro n x, refine ap g !p' ⬝ !pr ⬝ _, refine ap r !p ⬝ _, refine ap r (tcc_is_chain_complex X n _) ⬝ _, apply respect_pt end end theorem is_exact_at_t_cancel_aut {X : type_chain_complex N} {g : Π{n : N}, X (S n) →* X n} {e : Π{n}, X n ≃* X n} {r : Π{n}, X n →* X n} (l : Π{n}, X n →* X n) (p : Π{n : N} (x : X (S n)), g (e x) = tcc_to_fn X n x) (pr : Π{n : N} (x : X (S n)), g x = r (g (e x))) (pl : Π{n : N} (x : X (S n)), g (l x) = e (g x)) (H : is_exact_at_t X n) : is_exact_at_t (type_chain_complex_cancel_aut X @g @e @r @p @pr) n := begin intro y q, esimp at *, have H2 : tcc_to_fn X n (e⁻¹ y) = pt, from (homotopy_inv_of_homotopy_pre e _ _ p _)⁻¹ ⬝ q, cases (H _ H2) with x s, refine fiber.mk (l (e x)) _, refine !pl ⬝ _, refine ap e (!p ⬝ s) ⬝ _, apply right_inv end -- move to init.equiv. This is inv_commute for A ≡ unit definition inv_commute1' {B C : Type} (f : B → C) [is_equiv f] (h : B → B) (h' : C → C) (p : Π(b : B), f (h b) = h' (f b)) (c : C) : f⁻¹ (h' c) = h (f⁻¹ c) := eq_of_fn_eq_fn' f (right_inv f (h' c) ⬝ ap h' (right_inv f c)⁻¹ ⬝ (p (f⁻¹ c))⁻¹) definition inv_commute1 {B C : Type} (f : B ≃ C) (h : B → B) (h' : C → C) (p : Π(b : B), f (h b) = h' (f b)) (c : C) : f⁻¹ (h' c) = h (f⁻¹ c) := inv_commute1' (to_fun f) h h' p c -- move definition fn_cast_eq_cast_fn {A : Type} {P Q : A → Type} {x y : A} (p : x = y) (f : Πx, P x → Q x) (z : P x) : f y (cast (ap P p) z) = cast (ap Q p) (f x z) := by induction p; reflexivity definition cast_cast_inv {A : Type} {P : A → Type} {x y : A} (p : x = y) (z : P y) : cast (ap P p) (cast (ap P p⁻¹) z) = z := by induction p; reflexivity definition cast_inv_cast {A : Type} {P : A → Type} {x y : A} (p : x = y) (z : P x) : cast (ap P p⁻¹) (cast (ap P p) z) = z := by induction p; reflexivity -- more general transfer, where the base type can also change by an equivalence. definition transfer_type_chain_complex2 [constructor] {M : succ_str} {Y : M → Type*} (f : M ≃ N) (c : Π(m : M), S (f m) = f (S m)) (g : Π{m : M}, Y (S m) →* Y m) (e : Π{m}, X (f m) ≃* Y m) (p : Π{m} (x : X (S (f m))), e (tcc_to_fn X (f m) x) = g (e (cast (ap (λx, X x) (c m)) x))) : type_chain_complex M := type_chain_complex.mk Y @g begin intro m, apply equiv_rect (equiv_of_pequiv e), apply equiv_rect (equiv_of_eq (ap (λx, X x) (c (S m)))), esimp, apply equiv_rect (equiv_of_eq (ap (λx, X (S x)) (c m))), esimp, intro x, refine ap g (p _)⁻¹ ⬝ _, refine ap g (ap e (fn_cast_eq_cast_fn (c m) (tcc_to_fn X) x)) ⬝ _, refine (p _)⁻¹ ⬝ _, refine ap e (tcc_is_chain_complex X (f m) _) ⬝ _, apply respect_pt end definition is_exact_at_t_transfer2 {X : type_chain_complex N} {M : succ_str} {Y : M → Type*} (f : M ≃ N) (c : Π(m : M), S (f m) = f (S m)) (g : Π{m : M}, Y (S m) →* Y m) (e : Π{m}, X (f m) ≃* Y m) (p : Π{m} (x : X (S (f m))), e (tcc_to_fn X (f m) x) = g (e (cast (ap (λx, X x) (c m)) x))) {m : M} (H : is_exact_at_t X (f m)) : is_exact_at_t (transfer_type_chain_complex2 X f c @g @e @p) m := begin intro y q, esimp at *, have H2 : tcc_to_fn X (f m) ((equiv_of_eq (ap (λx, X x) (c m)))⁻¹ᵉ (e⁻¹ y)) = pt, begin refine _ ⬝ ap e⁻¹ᵉ* q ⬝ (respect_pt (e⁻¹ᵉ*)), apply eq_inv_of_eq, clear q, revert y, apply inv_homotopy_of_homotopy_pre e, apply inv_homotopy_of_homotopy_pre, apply p end, induction (H _ H2) with x r, refine fiber.mk (e (cast (ap (λx, X x) (c (S m))) (cast (ap (λx, X (S x)) (c m)) x))) _, refine (p _)⁻¹ ⬝ _, refine ap e (fn_cast_eq_cast_fn (c m) (tcc_to_fn X) x) ⬝ _, refine ap (λx, e (cast _ x)) r ⬝ _, esimp [equiv.symm], rewrite [-ap_inv], refine ap e !cast_cast_inv ⬝ _, apply right_inv end -- definition trunc_type_chain_complex [constructor] (X : type_chain_complex N) -- (k : trunc_index) : type_chain_complex N := -- type_chain_complex.mk -- (λn, ptrunc k (X n)) -- (λn, ptrunc_functor k (tcc_to_fn X n)) -- begin -- intro n x, esimp at *, -- refine trunc.rec _ x, -- why doesn't induction work here? -- clear x, intro x, esimp, -- exact ap tr (tcc_is_chain_complex X n x) -- end end /- actual (set) chain complexes -/ structure chain_complex (N : succ_str) : Type := (car : N → Set*) (fn : Π(n : N), car (S n) →* car n) (is_chain_complex : Π(n : N) (x : car (S (S n))), fn n (fn (S n) x) = pt) section variables {N : succ_str} (X : chain_complex N) (n : N) definition cc_to_car [unfold 2] [coercion] := @chain_complex.car definition cc_to_fn [unfold 2] : X (S n) →* X n := @chain_complex.fn N X n definition cc_is_chain_complex [unfold 2] : Π(x : X (S (S n))), cc_to_fn X n (cc_to_fn X (S n) x) = pt := @chain_complex.is_chain_complex N X n -- important: these notions are shifted by one! (this is to avoid transports) definition is_exact_at [reducible] /- X n -/ : Type := Π(x : X (S n)), cc_to_fn X n x = pt → image (cc_to_fn X (S n)) x definition is_exact [reducible] /- X -/ : Type := Π(n : N), is_exact_at X n -- definition chain_complex_from_left (X : chain_complex) : chain_complex := -- chain_complex.mk (int.rec X (λn, punit)) -- begin -- intro n, fconstructor, -- { induction n with n n, -- { exact @lcc_to_fn X n}, -- { esimp, intro x, exact star}}, -- { induction n with n n, -- { apply respect_pt}, -- { reflexivity}} -- end -- begin -- intro n, induction n with n n, -- { exact lcc_is_chain_complex X}, -- { esimp, intro x, reflexivity} -- end -- definition is_exact_from_left {X : chain_complex} {n : ℕ} (H : is_exact_at_l X n) -- : is_exact_at (chain_complex_from_left X) n := -- H definition transfer_chain_complex [constructor] {Y : N → Set*} (g : Π{n : N}, Y (S n) →* Y n) (e : Π{n}, X n ≃* Y n) (p : Π{n} (x : X (S n)), e (cc_to_fn X n x) = g (e x)) : chain_complex N := chain_complex.mk Y @g abstract begin intro n, apply equiv_rect (equiv_of_pequiv e), intro x, refine ap g (p x)⁻¹ ⬝ _, refine (p _)⁻¹ ⬝ _, refine ap e (cc_is_chain_complex X n _) ⬝ _, apply respect_pt end end theorem is_exact_at_transfer {X : chain_complex N} {Y : N → Set*} (g : Π{n : N}, Y (S n) →* Y n) (e : Π{n}, X n ≃* Y n) (p : Π{n} (x : X (S n)), e (cc_to_fn X n x) = g (e x)) {n : N} (H : is_exact_at X n) : is_exact_at (transfer_chain_complex X @g @e @p) n := begin intro y q, esimp at *, have H2 : cc_to_fn X n (e⁻¹ᵉ* y) = pt, begin refine (inv_commute (λn, equiv_of_pequiv e) _ _ @p _)⁻¹ᵖ ⬝ _, refine ap _ q ⬝ _, exact respect_pt e⁻¹ᵉ* end, induction (H _ H2) with x, induction x with x r, refine image.mk (e x) _, refine (p x)⁻¹ ⬝ _, refine ap e r ⬝ _, apply right_inv end definition trunc_chain_complex [constructor] (X : type_chain_complex N) : chain_complex N := chain_complex.mk (λn, ptrunc 0 (X n)) (λn, ptrunc_functor 0 (tcc_to_fn X n)) begin intro n x, esimp at *, refine @trunc.rec _ _ _ (λH, !is_trunc_eq) _ x, clear x, intro x, esimp, exact ap tr (tcc_is_chain_complex X n x) end definition is_exact_at_trunc (X : type_chain_complex N) {n : N} (H : is_exact_at_t X n) : is_exact_at (trunc_chain_complex X) n := begin intro x p, esimp at *, induction x with x, esimp at *, note q := !tr_eq_tr_equiv p, induction q with q, induction H x q with y r, refine image.mk (tr y) _, esimp, exact ap tr r end definition transfer_chain_complex2' [constructor] {M : succ_str} {Y : M → Set*} (f : N ≃ M) (c : Π(n : N), f (S n) = S (f n)) (g : Π{m : M}, Y (S m) →* Y m) (e : Π{n}, X n ≃* Y (f n)) (p : Π{n} (x : X (S n)), e (cc_to_fn X n x) = g (c n ▸ e x)) : chain_complex M := chain_complex.mk Y @g begin refine equiv_rect f _ _, intro n, have H : Π (x : Y (f (S (S n)))), g (c n ▸ g (c (S n) ▸ x)) = pt, begin apply equiv_rect (equiv_of_pequiv e), intro x, refine ap (λx, g (c n ▸ x)) (@p (S n) x)⁻¹ᵖ ⬝ _, refine (p _)⁻¹ ⬝ _, refine ap e (cc_is_chain_complex X n _) ⬝ _, apply respect_pt end, refine pi.pi_functor _ _ H, { intro x, exact (c (S n))⁻¹ ▸ (c n)⁻¹ ▸ x}, -- with implicit arguments, this is: -- transport (λx, Y x) (c (S n))⁻¹ (transport (λx, Y (S x)) (c n)⁻¹ x) { intro x, intro p, refine _ ⬝ p, rewrite [tr_inv_tr, fn_tr_eq_tr_fn (c n)⁻¹ @g, tr_inv_tr]} end definition is_exact_at_transfer2' {X : chain_complex N} {M : succ_str} {Y : M → Set*} (f : N ≃ M) (c : Π(n : N), f (S n) = S (f n)) (g : Π{m : M}, Y (S m) →* Y m) (e : Π{n}, X n ≃* Y (f n)) (p : Π{n} (x : X (S n)), e (cc_to_fn X n x) = g (c n ▸ e x)) {n : N} (H : is_exact_at X n) : is_exact_at (transfer_chain_complex2' X f c @g @e @p) (f n) := begin intro y q, esimp at *, have H2 : cc_to_fn X n (e⁻¹ᵉ* ((c n)⁻¹ ▸ y)) = pt, begin refine (inv_commute (λn, equiv_of_pequiv e) _ _ @p _)⁻¹ᵖ ⬝ _, rewrite [tr_inv_tr, q], exact respect_pt e⁻¹ᵉ* end, induction (H _ H2) with x, induction x with x r, refine image.mk (c n ▸ c (S n) ▸ e x) _, rewrite [fn_tr_eq_tr_fn (c n) @g], refine ap (λx, c n ▸ x) (p x)⁻¹ ⬝ _, refine ap (λx, c n ▸ e x) r ⬝ _, refine ap (λx, c n ▸ x) !right_inv ⬝ _, apply tr_inv_tr, end -- structure group_chain_complex : Type := -- (car : N → Group) -- (fn : Π(n : N), car (S n) →g car n) -- (is_chain_complex : Π{n : N} (x : car ((S n) + 1)), fn n (fn (S n) x) = 1) -- structure group_chain_complex : Type := -- chain complex on the naturals with maps going down -- (car : N → Group) -- (fn : Π(n : N), car (S n) →g car n) -- (is_chain_complex : Π{n : N} (x : car ((S n) + 1)), fn n (fn (S n) x) = 1) -- structure right_group_chain_complex : Type := -- chain complex on the naturals with maps going up -- (car : N → Group) -- (fn : Π(n : N), car n →g car (S n)) -- (is_chain_complex : Π{n : N} (x : car n), fn (S n) (fn n x) = 1) -- definition gcc_to_car [unfold 1] [coercion] := @group_chain_complex.car -- definition gcc_to_fn [unfold 1] := @group_chain_complex.fn -- definition gcc_is_chain_complex [unfold 1] := @group_chain_complex.is_chain_complex -- definition lgcc_to_car [unfold 1] [coercion] := @left_group_chain_complex.car -- definition lgcc_to_fn [unfold 1] := @left_group_chain_complex.fn -- definition lgcc_is_chain_complex [unfold 1] := @left_group_chain_complex.is_chain_complex -- definition rgcc_to_car [unfold 1] [coercion] := @right_group_chain_complex.car -- definition rgcc_to_fn [unfold 1] := @right_group_chain_complex.fn -- definition rgcc_is_chain_complex [unfold 1] := @right_group_chain_complex.is_chain_complex -- -- important: these notions are shifted by one! (this is to avoid transports) -- definition is_exact_at_g [reducible] (X : group_chain_complex) (n : N) : Type := -- Π(x : X (S n)), gcc_to_fn X n x = 1 → image (gcc_to_fn X (S n)) x -- definition is_exact_at_lg [reducible] (X : left_group_chain_complex) (n : N) : Type := -- Π(x : X (S n)), lgcc_to_fn X n x = 1 → image (lgcc_to_fn X (S n)) x -- definition is_exact_at_rg [reducible] (X : right_group_chain_complex) (n : N) : Type := -- Π(x : X (S n)), rgcc_to_fn X (S n) x = 1 → image (rgcc_to_fn X n) x -- definition is_exact_g [reducible] (X : group_chain_complex) : Type := -- Π(n : N), is_exact_at_g X n -- definition is_exact_lg [reducible] (X : left_group_chain_complex) : Type := -- Π(n : N), is_exact_at_lg X n -- definition is_exact_rg [reducible] (X : right_group_chain_complex) : Type := -- Π(n : N), is_exact_at_rg X n -- definition group_chain_complex_from_left (X : left_group_chain_complex) : group_chain_complex := -- group_chain_complex.mk (int.rec X (λn, G0)) -- begin -- intro n, fconstructor, -- { induction n with n n, -- { exact @lgcc_to_fn X n}, -- { esimp, intro x, exact star}}, -- { induction n with n n, -- { apply respect_mul}, -- { intro g h, reflexivity}} -- end -- begin -- intro n, induction n with n n, -- { exact lgcc_is_chain_complex X}, -- { esimp, intro x, reflexivity} -- end -- definition is_exact_g_from_left {X : left_group_chain_complex} {n : N} (H : is_exact_at_lg X n) -- : is_exact_at_g (group_chain_complex_from_left X) n := -- H -- definition transfer_left_group_chain_complex [constructor] (X : left_group_chain_complex) -- {Y : N → Group} (g : Π{n : N}, Y (S n) →g Y n) (e : Π{n}, X n ≃* Y n) -- (p : Π{n} (x : X (S n)), e (lgcc_to_fn X n x) = g (e x)) : left_group_chain_complex := -- left_group_chain_complex.mk Y @g -- begin -- intro n, apply equiv_rect (pequiv_of_equiv e), intro x, -- refine ap g (p x)⁻¹ ⬝ _, -- refine (p _)⁻¹ ⬝ _, -- refine ap e (lgcc_is_chain_complex X _) ⬝ _, -- exact respect_pt -- end -- definition is_exact_at_t_transfer {X : left_group_chain_complex} {Y : N → Type*} -- {g : Π{n : N}, Y (S n) →* Y n} (e : Π{n}, X n ≃* Y n) -- (p : Π{n} (x : X (S n)), e (lgcc_to_fn X n x) = g (e x)) {n : N} -- (H : is_exact_at_lg X n) : is_exact_at_lg (transfer_left_group_chain_complex X @g @e @p) n := -- begin -- intro y q, esimp at *, -- have H2 : lgcc_to_fn X n (e⁻¹ᵉ* y) = pt, -- begin -- refine (inv_commute (λn, equiv_of_pequiv e) _ _ @p _)⁻¹ᵖ ⬝ _, -- refine ap _ q ⬝ _, -- exact respect_pt e⁻¹ᵉ* -- end, -- cases (H _ H2) with x r, -- refine image.mk (e x) _, -- refine (p x)⁻¹ ⬝ _, -- refine ap e r ⬝ _, -- apply right_inv -- end -- TODO: move definition is_trunc_ptrunctype [instance] {n : trunc_index} (X : ptrunctype n) : is_trunc n (ptrunctype.to_pType X) := trunctype.struct X /- A group where the point in the pointed type corresponds with 1 in the group. We need this structure because a chain complex is a sequence of pointed types, and we need to assume for some of the theorems below that some of these pointed types are groups, where the unit for multiplication is the point. -/ structure pgroup [class] (X : Type*) extends semigroup X, has_inv X := (pt_mul : Πa, mul pt a = a) (mul_pt : Πa, mul a pt = a) (mul_left_inv_pt : Πa, mul (inv a) a = pt) definition group_of_pgroup [reducible] [instance] (X : Type*) [H : pgroup X] : group X := ⦃group, H, one := pt, one_mul := pgroup.pt_mul , mul_one := pgroup.mul_pt, mul_left_inv := pgroup.mul_left_inv_pt⦄ definition pgroup_of_group (X : Type*) [H : group X] (p : one = pt :> X) : pgroup X := begin cases X with X x, esimp at *, induction p, exact ⦃pgroup, H, pt_mul := one_mul, mul_pt := mul_one, mul_left_inv_pt := mul.left_inv⦄ end /- The following theorems state that in a chain complex, if certain types are contractible, and the chain complex is exact at the right spots, a map in the chain complex is an embedding/surjection/equivalence. For the first and third we also need to assume that the map is a group homomorphism (and hence that the two types around it are groups). -/ definition is_embedding_of_trivial (X : chain_complex N) {n : N} (H : is_exact_at X n) [HX : is_contr (X (S (S n)))] [pgroup (X n)] [pgroup (X (S n))] [is_homomorphism (cc_to_fn X n)] : is_embedding (cc_to_fn X n) := begin apply is_embedding_homomorphism, intro g p, induction H g p with v, induction v with x q, have r : pt = x, from !is_prop.elim, induction r, refine q⁻¹ ⬝ _, apply respect_pt end definition is_surjective_of_trivial (X : chain_complex N) {n : N} (H : is_exact_at X n) [HX : is_contr (X n)] : is_surjective (cc_to_fn X (S n)) := begin intro g, refine trunc.elim _ (H g !is_prop.elim), apply tr end definition is_equiv_of_trivial (X : chain_complex N) {n : N} (H1 : is_exact_at X n) (H2 : is_exact_at X (S n)) [HX1 : is_contr (X n)] [HX2 : is_contr (X (S (S (S n))))] [pgroup (X (S n))] [pgroup (X (S (S n)))] [is_homomorphism (cc_to_fn X (S n))] : is_equiv (cc_to_fn X (S n)) := begin apply is_equiv_of_is_surjective_of_is_embedding, { apply is_embedding_of_trivial X, apply H2}, { apply is_surjective_of_trivial X, apply H1}, end end end chain_complex