/- Copyright (c) 2015 Nathaniel Thomas. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nathaniel Thomas, Jeremy Avigad Modules prod vector spaces over a ring. (We use "left_module," which is more precise, because "module" is a keyword.) -/ import algebra.field open algebra structure has_scalar [class] (F V : Type) := (smul : F → V → V) infixl ` • `:73 := has_scalar.smul /- modules over a ring -/ structure left_module (R M : Type) [ringR : ring R] extends has_scalar R M, ab_group M renaming mul→add mul_assoc→add_assoc one→zero one_mul→zero_add mul_one→add_zero inv→neg mul_left_inv→add_left_inv mul_comm→add_comm := (smul_left_distrib : Π (r : R) (x y : M), smul r (add x y) = (add (smul r x) (smul r y))) (smul_right_distrib : Π (r s : R) (x : M), smul (ring.add _ r s) x = (add (smul r x) (smul s x))) (mul_smul : Π r s x, smul (mul r s) x = smul r (smul s x)) (one_smul : Π x, smul one x = x) /- we make it a class now (and not as part of the structure) to avoid left_module.to_ab_group to be an instance -/ attribute left_module [class] definition add_ab_group_of_left_module [reducible] [trans_instance] (R M : Type) [K : ring R] [H : left_module R M] : add_ab_group M := @left_module.to_ab_group R M K H definition has_scalar_of_left_module [reducible] [trans_instance] (R M : Type) [K : ring R] [H : left_module R M] : has_scalar R M := @left_module.to_has_scalar R M K H section left_module variables {R M : Type} variable [ringR : ring R] variable [moduleRM : left_module R M] include ringR moduleRM -- Note: the anonymous include does not work in the propositions below. proposition smul_left_distrib (a : R) (u v : M) : a • (u + v) = a • u + a • v := !left_module.smul_left_distrib proposition smul_right_distrib (a b : R) (u : M) : (a + b) • u = a • u + b • u := !left_module.smul_right_distrib proposition mul_smul (a : R) (b : R) (u : M) : (a * b) • u = a • (b • u) := !left_module.mul_smul proposition one_smul (u : M) : (1 : R) • u = u := !left_module.one_smul proposition zero_smul (u : M) : (0 : R) • u = 0 := have (0 : R) • u + 0 • u = 0 • u + 0, by rewrite [-smul_right_distrib, *add_zero], !add.left_cancel this proposition smul_zero (a : R) : a • (0 : M) = 0 := have a • (0:M) + a • 0 = a • 0 + 0, by rewrite [-smul_left_distrib, *add_zero], !add.left_cancel this proposition neg_smul (a : R) (u : M) : (-a) • u = - (a • u) := eq_neg_of_add_eq_zero (by rewrite [-smul_right_distrib, add.left_inv, zero_smul]) proposition neg_one_smul (u : M) : -(1 : R) • u = -u := by rewrite [neg_smul, one_smul] proposition smul_neg (a : R) (u : M) : a • (-u) = -(a • u) := by rewrite [-neg_one_smul, -mul_smul, mul_neg_one_eq_neg, neg_smul] proposition smul_sub_left_distrib (a : R) (u v : M) : a • (u - v) = a • u - a • v := by rewrite [sub_eq_add_neg, smul_left_distrib, smul_neg] proposition sub_smul_right_distrib (a b : R) (v : M) : (a - b) • v = a • v - b • v := by rewrite [sub_eq_add_neg, smul_right_distrib, neg_smul] end left_module /- vector spaces -/ structure vector_space [class] (F V : Type) [fieldF : field F] extends left_module F V