import types.trunc types.sum open pi prod sum unit bool trunc is_trunc is_equiv eq equiv namespace choice -- the following brilliant name is from Agda definition unchoose [unfold 4] (n : ℕ₋₂) {X : Type} (A : X → Type) : trunc n (Πx, A x) → Πx, trunc n (A x) := trunc.elim (λf x, tr (f x)) definition has_choice.{u} (n : ℕ₋₂) (X : Type.{u}) : Type.{u+1} := Π(A : X → Type.{u}), is_equiv (unchoose n A) definition choice_equiv.{u} [constructor] {n : ℕ₋₂} {X : Type.{u}} (H : has_choice n X) (A : X → Type.{u}) : trunc n (Πx, A x) ≃ (Πx, trunc n (A x)) := equiv.mk _ (H A) definition has_choice_of_succ (X : Type) (H : Πk, has_choice (k.+1) X) (n : ℕ₋₂) : has_choice n X := begin cases n with n, { intro A, apply is_equiv_of_is_contr }, { exact H n } end definition has_choice_empty (n : ℕ₋₂) : has_choice n empty := begin intro A, fapply adjointify, { intro f, apply tr, intro x, induction x }, { intro f, apply eq_of_homotopy, intro x, induction x }, { intro g, induction g with g, apply ap tr, apply eq_of_homotopy, intro x, induction x } end definition is_trunc_is_contr_fiber [instance] [priority 900] (n : ℕ₋₂) {A B : Type} (f : A → B) (b : B) [is_trunc n A] [is_trunc n B] : is_trunc n (is_contr (fiber f b)) := begin cases n, { apply is_contr_of_inhabited_prop, apply is_contr_fun_of_is_equiv, apply is_equiv_of_is_contr }, { apply is_trunc_succ_of_is_prop } end definition has_choice_unit : Πn, has_choice n unit := begin intro n A, fapply adjointify, { intro f, induction f ⋆ with a, apply tr, intro u, induction u, exact a }, { intro f, apply eq_of_homotopy, intro u, induction u, esimp, generalize f ⋆, intro a, induction a, reflexivity }, { intro g, induction g with g, apply ap tr, apply eq_of_homotopy, intro u, induction u, reflexivity } end definition has_choice_sum.{u} (n : ℕ₋₂) {A B : Type.{u}} (hA : has_choice n A) (hB : has_choice n B) : has_choice n (A ⊎ B) := begin intro P, fapply is_equiv_of_equiv_of_homotopy, { exact calc trunc n (Πx, P x) ≃ trunc n ((Πa, P (inl a)) × Πb, P (inr b)) : trunc_equiv_trunc n !equiv_sum_rec⁻¹ᵉ ... ≃ trunc n (Πa, P (inl a)) × trunc n (Πb, P (inr b)) : trunc_prod_equiv ... ≃ (Πa, trunc n (P (inl a))) × Πb, trunc n (P (inr b)) : by exact prod_equiv_prod (choice_equiv hA _) (choice_equiv hB _) ... ≃ Πx, trunc n (P x) : equiv_sum_rec }, { intro f, induction f, apply eq_of_homotopy, intro x, esimp, induction x with a b: reflexivity } end /- currently we prove it using univalence -/ definition has_choice_equiv_closed.{u} (n : ℕ₋₂) {A B : Type.{u}} (f : A ≃ B) (hA : has_choice n B) : has_choice n A := begin induction f using rec_on_ua_idp, assumption end definition has_choice_bool (n : ℕ₋₂) : has_choice n bool := has_choice_equiv_closed n bool_equiv_unit_sum_unit (has_choice_sum n (has_choice_unit n) (has_choice_unit n)) end choice