/- equalities between pointed homotopies -/ -- Author: Floris van Doorn --import .pointed_pi import .move_to_lib open pointed eq equiv function is_equiv unit is_trunc trunc nat algebra group sigma namespace pointed definition loop_pequiv_eq_closed [constructor] {A : Type} {a a' : A} (p : a = a') : pointed.MK (a = a) idp ≃* pointed.MK (a' = a') idp := pequiv_of_equiv (loop_equiv_eq_closed p) (con.left_inv p) definition punit_pmap_phomotopy [constructor] {A : Type*} (f : punit →* A) : f ~* pconst punit A := begin fapply phomotopy.mk, { intro u, induction u, exact respect_pt f }, { reflexivity } end definition is_contr_punit_pmap (A : Type*) : is_contr (punit →* A) := is_contr.mk (pconst punit A) (λf, eq_of_phomotopy (punit_pmap_phomotopy f)⁻¹*) definition phomotopy_of_eq_idp {A B : Type*} (f : A →* B) : phomotopy_of_eq idp = phomotopy.refl f := idp definition to_fun_pequiv_trans {X Y Z : Type*} (f : X ≃* Y) (g :Y ≃* Z) : f ⬝e* g ~ g ∘ f := λx, idp definition pr1_phomotopy_eq {A B : Type*} {f g : A →* B} {p q : f ~* g} (r : p = q) (a : A) : p a = q a := ap010 to_homotopy r a definition ap1_gen_con_left {A B : Type} {a a' : A} {b₀ b₁ b₂ : B} {f : A → b₀ = b₁} {f' : A → b₁ = b₂} {q₀ q₁ : b₀ = b₁} {q₀' q₁' : b₁ = b₂} (r₀ : f a = q₀) (r₁ : f a' = q₁) (r₀' : f' a = q₀') (r₁' : f' a' = q₁') (p : a = a') : ap1_gen (λa, f a ⬝ f' a) (r₀ ◾ r₀') (r₁ ◾ r₁') p = whisker_right q₀' (ap1_gen f r₀ r₁ p) ⬝ whisker_left q₁ (ap1_gen f' r₀' r₁' p) := begin induction r₀, induction r₁, induction r₀', induction r₁', induction p, reflexivity end definition ap1_gen_con_left_idp {A B : Type} {a : A} {b₀ b₁ b₂ : B} {f : A → b₀ = b₁} {f' : A → b₁ = b₂} {q₀ : b₀ = b₁} {q₁ : b₁ = b₂} (r₀ : f a = q₀) (r₁ : f' a = q₁) : ap1_gen_con_left r₀ r₀ r₁ r₁ idp = !con.left_inv ⬝ (ap (whisker_right q₁) !con.left_inv ◾ ap (whisker_left _) !con.left_inv)⁻¹ := begin induction r₀, induction r₁, reflexivity end -- /- the pointed type of (unpointed) dependent maps -/ -- definition pupi [constructor] {A : Type} (P : A → Type*) : Type* := -- pointed.mk' (Πa, P a) -- definition loop_pupi_commute {A : Type} (B : A → Type*) : Ω(pupi B) ≃* pupi (λa, Ω (B a)) := -- pequiv_of_equiv eq_equiv_homotopy rfl -- definition equiv_pupi_right {A : Type} {P Q : A → Type*} (g : Πa, P a ≃* Q a) -- : pupi P ≃* pupi Q := -- pequiv_of_equiv (pi_equiv_pi_right g) -- begin esimp, apply eq_of_homotopy, intros a, esimp, exact (respect_pt (g a)) end section psquare /- Squares of pointed maps We treat expressions of the form psquare f g h k :≡ k ∘* f ~* g ∘* h as squares, where f is the top, g is the bottom, h is the left face and k is the right face. Then the following are operations on squares -/ variables {A A' A₀₀ A₂₀ A₄₀ A₀₂ A₂₂ A₄₂ A₀₄ A₂₄ A₄₄ : Type*} {f₁₀ f₁₀' : A₀₀ →* A₂₀} {f₃₀ : A₂₀ →* A₄₀} {f₀₁ f₀₁' : A₀₀ →* A₀₂} {f₂₁ f₂₁' : A₂₀ →* A₂₂} {f₄₁ : A₄₀ →* A₄₂} {f₁₂ f₁₂' : A₀₂ →* A₂₂} {f₃₂ : A₂₂ →* A₄₂} {f₀₃ : A₀₂ →* A₀₄} {f₂₃ : A₂₂ →* A₂₄} {f₄₃ : A₄₂ →* A₄₄} {f₁₄ : A₀₄ →* A₂₄} {f₃₄ : A₂₄ →* A₄₄} definition psquare [reducible] (f₁₀ : A₀₀ →* A₂₀) (f₁₂ : A₀₂ →* A₂₂) (f₀₁ : A₀₀ →* A₀₂) (f₂₁ : A₂₀ →* A₂₂) : Type := f₂₁ ∘* f₁₀ ~* f₁₂ ∘* f₀₁ definition psquare_of_phomotopy (p : f₂₁ ∘* f₁₀ ~* f₁₂ ∘* f₀₁) : psquare f₁₀ f₁₂ f₀₁ f₂₁ := p definition phomotopy_of_psquare (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) : f₂₁ ∘* f₁₀ ~* f₁₂ ∘* f₀₁ := p definition phdeg_square {f f' : A →* A'} (p : f ~* f') : psquare !pid !pid f f' := !pcompose_pid ⬝* p⁻¹* ⬝* !pid_pcompose⁻¹* definition pvdeg_square {f f' : A →* A'} (p : f ~* f') : psquare f f' !pid !pid := !pid_pcompose ⬝* p ⬝* !pcompose_pid⁻¹* variables (f₀₁ f₁₀) definition phrefl : psquare !pid !pid f₀₁ f₀₁ := phdeg_square phomotopy.rfl definition pvrefl : psquare f₁₀ f₁₀ !pid !pid := pvdeg_square phomotopy.rfl variables {f₀₁ f₁₀} definition phrfl : psquare !pid !pid f₀₁ f₀₁ := phrefl f₀₁ definition pvrfl : psquare f₁₀ f₁₀ !pid !pid := pvrefl f₁₀ definition phconcat (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) (q : psquare f₃₀ f₃₂ f₂₁ f₄₁) : psquare (f₃₀ ∘* f₁₀) (f₃₂ ∘* f₁₂) f₀₁ f₄₁ := !passoc⁻¹* ⬝* pwhisker_right f₁₀ q ⬝* !passoc ⬝* pwhisker_left f₃₂ p ⬝* !passoc⁻¹* definition pvconcat (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) (q : psquare f₁₂ f₁₄ f₀₃ f₂₃) : psquare f₁₀ f₁₄ (f₀₃ ∘* f₀₁) (f₂₃ ∘* f₂₁) := !passoc ⬝* pwhisker_left _ p ⬝* !passoc⁻¹* ⬝* pwhisker_right _ q ⬝* !passoc definition phinverse {f₁₀ : A₀₀ ≃* A₂₀} {f₁₂ : A₀₂ ≃* A₂₂} (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) : psquare f₁₀⁻¹ᵉ* f₁₂⁻¹ᵉ* f₂₁ f₀₁ := !pid_pcompose⁻¹* ⬝* pwhisker_right _ (pleft_inv f₁₂)⁻¹* ⬝* !passoc ⬝* pwhisker_left _ (!passoc⁻¹* ⬝* pwhisker_right _ p⁻¹* ⬝* !passoc ⬝* pwhisker_left _ !pright_inv ⬝* !pcompose_pid) definition pvinverse {f₀₁ : A₀₀ ≃* A₀₂} {f₂₁ : A₂₀ ≃* A₂₂} (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) : psquare f₁₂ f₁₀ f₀₁⁻¹ᵉ* f₂₁⁻¹ᵉ* := (phinverse p⁻¹*)⁻¹* definition phomotopy_hconcat (q : f₀₁' ~* f₀₁) (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) : psquare f₁₀ f₁₂ f₀₁' f₂₁ := p ⬝* pwhisker_left f₁₂ q⁻¹* definition hconcat_phomotopy (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) (q : f₂₁' ~* f₂₁) : psquare f₁₀ f₁₂ f₀₁ f₂₁' := pwhisker_right f₁₀ q ⬝* p definition phomotopy_vconcat (q : f₁₀' ~* f₁₀) (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) : psquare f₁₀' f₁₂ f₀₁ f₂₁ := pwhisker_left f₂₁ q ⬝* p definition vconcat_phomotopy (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) (q : f₁₂' ~* f₁₂) : psquare f₁₀ f₁₂' f₀₁ f₂₁ := p ⬝* pwhisker_right f₀₁ q⁻¹* infix ` ⬝h* `:73 := phconcat infix ` ⬝v* `:73 := pvconcat infixl ` ⬝hp* `:72 := hconcat_phomotopy infixr ` ⬝ph* `:72 := phomotopy_hconcat infixl ` ⬝vp* `:72 := vconcat_phomotopy infixr ` ⬝pv* `:72 := phomotopy_vconcat postfix `⁻¹ʰ*`:(max+1) := phinverse postfix `⁻¹ᵛ*`:(max+1) := pvinverse definition pwhisker_tl (f : A →* A₀₀) (q : psquare f₁₀ f₁₂ f₀₁ f₂₁) : psquare (f₁₀ ∘* f) f₁₂ (f₀₁ ∘* f) f₂₁ := !passoc⁻¹* ⬝* pwhisker_right f q ⬝* !passoc definition ap1_psquare (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) : psquare (Ω→ f₁₀) (Ω→ f₁₂) (Ω→ f₀₁) (Ω→ f₂₁) := !ap1_pcompose⁻¹* ⬝* ap1_phomotopy p ⬝* !ap1_pcompose definition apn_psquare (n : ℕ) (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) : psquare (Ω→[n] f₁₀) (Ω→[n] f₁₂) (Ω→[n] f₀₁) (Ω→[n] f₂₁) := !apn_pcompose⁻¹* ⬝* apn_phomotopy n p ⬝* !apn_pcompose definition ptrunc_functor_psquare (n : ℕ₋₂) (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) : psquare (ptrunc_functor n f₁₀) (ptrunc_functor n f₁₂) (ptrunc_functor n f₀₁) (ptrunc_functor n f₂₁) := !ptrunc_functor_pcompose⁻¹* ⬝* ptrunc_functor_phomotopy n p ⬝* !ptrunc_functor_pcompose definition homotopy_group_functor_psquare (n : ℕ) (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) : psquare (π→[n] f₁₀) (π→[n] f₁₂) (π→[n] f₀₁) (π→[n] f₂₁) := !homotopy_group_functor_compose⁻¹* ⬝* homotopy_group_functor_phomotopy n p ⬝* !homotopy_group_functor_compose definition homotopy_group_homomorphism_psquare (n : ℕ) [H : is_succ n] (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) : hsquare (π→g[n] f₁₀) (π→g[n] f₁₂) (π→g[n] f₀₁) (π→g[n] f₂₁) := begin induction H with n, exact to_homotopy (ptrunc_functor_psquare 0 (apn_psquare (succ n) p)) end end psquare definition phomotopy_of_eq_of_phomotopy {A B : Type*} {f g : A →* B} (p : f ~* g) : phomotopy_of_eq (eq_of_phomotopy p) = p := to_right_inv (pmap_eq_equiv f g) p definition ap_eq_of_phomotopy {A B : Type*} {f g : A →* B} (p : f ~* g) (a : A) : ap (λf : A →* B, f a) (eq_of_phomotopy p) = p a := ap010 to_homotopy (phomotopy_of_eq_of_phomotopy p) a definition phomotopy_rec_on_eq [recursor] {A B : Type*} {f g : A →* B} {Q : (f ~* g) → Type} (p : f ~* g) (H : Π(q : f = g), Q (phomotopy_of_eq q)) : Q p := phomotopy_of_eq_of_phomotopy p ▸ H (eq_of_phomotopy p) definition phomotopy_rec_on_idp [recursor] {A B : Type*} {f : A →* B} {Q : Π{g}, (f ~* g) → Type} {g : A →* B} (p : f ~* g) (H : Q (phomotopy.refl f)) : Q p := begin induction p using phomotopy_rec_on_eq, induction q, exact H end definition phomotopy_rec_on_eq_phomotopy_of_eq {A B : Type*} {f g: A →* B} {Q : (f ~* g) → Type} (p : f = g) (H : Π(q : f = g), Q (phomotopy_of_eq q)) : phomotopy_rec_on_eq (phomotopy_of_eq p) H = H p := begin unfold phomotopy_rec_on_eq, refine ap (λp, p ▸ _) !adj ⬝ _, refine !tr_compose⁻¹ ⬝ _, apply apdt end definition phomotopy_rec_on_idp_refl {A B : Type*} (f : A →* B) {Q : Π{g}, (f ~* g) → Type} (H : Q (phomotopy.refl f)) : phomotopy_rec_on_idp phomotopy.rfl H = H := !phomotopy_rec_on_eq_phomotopy_of_eq definition phomotopy_eq_equiv {A B : Type*} {f g : A →* B} (h k : f ~* g) : (h = k) ≃ Σ(p : to_homotopy h ~ to_homotopy k), whisker_right (respect_pt g) (p pt) ⬝ to_homotopy_pt k = to_homotopy_pt h := calc h = k ≃ phomotopy.sigma_char _ _ h = phomotopy.sigma_char _ _ k : eq_equiv_fn_eq (phomotopy.sigma_char f g) h k ... ≃ Σ(p : to_homotopy h = to_homotopy k), pathover (λp, p pt ⬝ respect_pt g = respect_pt f) (to_homotopy_pt h) p (to_homotopy_pt k) : sigma_eq_equiv _ _ ... ≃ Σ(p : to_homotopy h = to_homotopy k), to_homotopy_pt h = ap (λq, q pt ⬝ respect_pt g) p ⬝ to_homotopy_pt k : sigma_equiv_sigma_right (λp, eq_pathover_equiv_Fl p (to_homotopy_pt h) (to_homotopy_pt k)) ... ≃ Σ(p : to_homotopy h = to_homotopy k), ap (λq, q pt ⬝ respect_pt g) p ⬝ to_homotopy_pt k = to_homotopy_pt h : sigma_equiv_sigma_right (λp, eq_equiv_eq_symm _ _) ... ≃ Σ(p : to_homotopy h = to_homotopy k), whisker_right (respect_pt g) (apd10 p pt) ⬝ to_homotopy_pt k = to_homotopy_pt h : sigma_equiv_sigma_right (λp, equiv_eq_closed_left _ (whisker_right _ !whisker_right_ap⁻¹)) ... ≃ Σ(p : to_homotopy h ~ to_homotopy k), whisker_right (respect_pt g) (p pt) ⬝ to_homotopy_pt k = to_homotopy_pt h : sigma_equiv_sigma_left' eq_equiv_homotopy definition phomotopy_eq {A B : Type*} {f g : A →* B} {h k : f ~* g} (p : to_homotopy h ~ to_homotopy k) (q : whisker_right (respect_pt g) (p pt) ⬝ to_homotopy_pt k = to_homotopy_pt h) : h = k := to_inv (phomotopy_eq_equiv h k) ⟨p, q⟩ definition phomotopy_eq' {A B : Type*} {f g : A →* B} {h k : f ~* g} (p : to_homotopy h ~ to_homotopy k) (q : square (to_homotopy_pt h) (to_homotopy_pt k) (whisker_right (respect_pt g) (p pt)) idp) : h = k := phomotopy_eq p (eq_of_square q)⁻¹ definition eq_of_phomotopy_refl {X Y : Type*} (f : X →* Y) : eq_of_phomotopy (phomotopy.refl f) = idpath f := begin apply to_inv_eq_of_eq, reflexivity end definition trans_refl {A B : Type*} {f g : A →* B} (p : f ~* g) : p ⬝* phomotopy.refl g = p := begin induction A with A a₀, induction B with B b₀, induction f with f f₀, induction g with g g₀, induction p with p p₀, esimp at *, induction g₀, induction p₀, reflexivity end definition eq_of_phomotopy_trans {X Y : Type*} {f g h : X →* Y} (p : f ~* g) (q : g ~* h) : eq_of_phomotopy (p ⬝* q) = eq_of_phomotopy p ⬝ eq_of_phomotopy q := begin induction p using phomotopy_rec_on_idp, induction q using phomotopy_rec_on_idp, exact ap eq_of_phomotopy !trans_refl ⬝ whisker_left _ !eq_of_phomotopy_refl⁻¹ end definition refl_trans {A B : Type*} {f g : A →* B} (p : f ~* g) : phomotopy.refl f ⬝* p = p := begin induction p using phomotopy_rec_on_idp, induction A with A a₀, induction B with B b₀, induction f with f f₀, esimp at *, induction f₀, reflexivity end definition trans_assoc {A B : Type*} {f g h i : A →* B} (p : f ~* g) (q : g ~* h) (r : h ~* i) : p ⬝* q ⬝* r = p ⬝* (q ⬝* r) := begin induction r using phomotopy_rec_on_idp, induction q using phomotopy_rec_on_idp, induction p using phomotopy_rec_on_idp, induction B with B b₀, induction f with f f₀, esimp at *, induction f₀, reflexivity end definition refl_symm {A B : Type*} (f : A →* B) : phomotopy.rfl⁻¹* = phomotopy.refl f := begin induction B with B b₀, induction f with f f₀, esimp at *, induction f₀, reflexivity end definition symm_symm {A B : Type*} {f g : A →* B} (p : f ~* g) : p⁻¹*⁻¹* = p := phomotopy_eq (λa, !inv_inv) begin induction p using phomotopy_rec_on_idp, induction f with f f₀, induction B with B b₀, esimp at *, induction f₀, reflexivity end definition trans_right_inv {A B : Type*} {f g : A →* B} (p : f ~* g) : p ⬝* p⁻¹* = phomotopy.rfl := begin induction p using phomotopy_rec_on_idp, exact !refl_trans ⬝ !refl_symm end definition trans_left_inv {A B : Type*} {f g : A →* B} (p : f ~* g) : p⁻¹* ⬝* p = phomotopy.rfl := begin induction p using phomotopy_rec_on_idp, exact !trans_refl ⬝ !refl_symm end definition trans2 {A B : Type*} {f g h : A →* B} {p p' : f ~* g} {q q' : g ~* h} (r : p = p') (s : q = q') : p ⬝* q = p' ⬝* q' := ap011 phomotopy.trans r s definition pcompose3 {A B C : Type*} {g g' : B →* C} {f f' : A →* B} {p p' : g ~* g'} {q q' : f ~* f'} (r : p = p') (s : q = q') : p ◾* q = p' ◾* q' := ap011 pcompose2 r s definition symm2 {A B : Type*} {f g : A →* B} {p p' : f ~* g} (r : p = p') : p⁻¹* = p'⁻¹* := ap phomotopy.symm r infixl ` ◾** `:80 := pointed.trans2 infixl ` ◽* `:81 := pointed.pcompose3 postfix `⁻²**`:(max+1) := pointed.symm2 definition trans_symm {A B : Type*} {f g h : A →* B} (p : f ~* g) (q : g ~* h) : (p ⬝* q)⁻¹* = q⁻¹* ⬝* p⁻¹* := begin induction p using phomotopy_rec_on_idp, induction q using phomotopy_rec_on_idp, exact !trans_refl⁻²** ⬝ !trans_refl⁻¹ ⬝ idp ◾** !refl_symm⁻¹ end definition phwhisker_left {A B : Type*} {f g h : A →* B} (p : f ~* g) {q q' : g ~* h} (s : q = q') : p ⬝* q = p ⬝* q' := idp ◾** s definition phwhisker_right {A B : Type*} {f g h : A →* B} {p p' : f ~* g} (q : g ~* h) (r : p = p') : p ⬝* q = p' ⬝* q := r ◾** idp definition pwhisker_left_refl {A B C : Type*} (g : B →* C) (f : A →* B) : pwhisker_left g (phomotopy.refl f) = phomotopy.refl (g ∘* f) := begin induction A with A a₀, induction B with B b₀, induction C with C c₀, induction f with f f₀, induction g with g g₀, esimp at *, induction g₀, induction f₀, reflexivity end definition pwhisker_right_refl {A B C : Type*} (f : A →* B) (g : B →* C) : pwhisker_right f (phomotopy.refl g) = phomotopy.refl (g ∘* f) := begin induction A with A a₀, induction B with B b₀, induction C with C c₀, induction f with f f₀, induction g with g g₀, esimp at *, induction g₀, induction f₀, reflexivity end definition pcompose2_refl {A B C : Type*} (g : B →* C) (f : A →* B) : phomotopy.refl g ◾* phomotopy.refl f = phomotopy.rfl := !pwhisker_right_refl ◾** !pwhisker_left_refl ⬝ !refl_trans definition pcompose2_refl_left {A B C : Type*} (g : B →* C) {f f' : A →* B} (p : f ~* f') : phomotopy.rfl ◾* p = pwhisker_left g p := !pwhisker_right_refl ◾** idp ⬝ !refl_trans definition pcompose2_refl_right {A B C : Type*} {g g' : B →* C} (f : A →* B) (p : g ~* g') : p ◾* phomotopy.rfl = pwhisker_right f p := idp ◾** !pwhisker_left_refl ⬝ !trans_refl definition pwhisker_left_trans {A B C : Type*} (g : B →* C) {f₁ f₂ f₃ : A →* B} (p : f₁ ~* f₂) (q : f₂ ~* f₃) : pwhisker_left g (p ⬝* q) = pwhisker_left g p ⬝* pwhisker_left g q := begin induction p using phomotopy_rec_on_idp, induction q using phomotopy_rec_on_idp, refine _ ⬝ !pwhisker_left_refl⁻¹ ◾** !pwhisker_left_refl⁻¹, refine ap (pwhisker_left g) !trans_refl ⬝ !pwhisker_left_refl ⬝ !trans_refl⁻¹ end definition pwhisker_right_trans {A B C : Type*} (f : A →* B) {g₁ g₂ g₃ : B →* C} (p : g₁ ~* g₂) (q : g₂ ~* g₃) : pwhisker_right f (p ⬝* q) = pwhisker_right f p ⬝* pwhisker_right f q := begin induction p using phomotopy_rec_on_idp, induction q using phomotopy_rec_on_idp, refine _ ⬝ !pwhisker_right_refl⁻¹ ◾** !pwhisker_right_refl⁻¹, refine ap (pwhisker_right f) !trans_refl ⬝ !pwhisker_right_refl ⬝ !trans_refl⁻¹ end definition pwhisker_left_symm {A B C : Type*} (g : B →* C) {f₁ f₂ : A →* B} (p : f₁ ~* f₂) : pwhisker_left g p⁻¹* = (pwhisker_left g p)⁻¹* := begin induction p using phomotopy_rec_on_idp, refine _ ⬝ ap phomotopy.symm !pwhisker_left_refl⁻¹, refine ap (pwhisker_left g) !refl_symm ⬝ !pwhisker_left_refl ⬝ !refl_symm⁻¹ end definition pwhisker_right_symm {A B C : Type*} (f : A →* B) {g₁ g₂ : B →* C} (p : g₁ ~* g₂) : pwhisker_right f p⁻¹* = (pwhisker_right f p)⁻¹* := begin induction p using phomotopy_rec_on_idp, refine _ ⬝ ap phomotopy.symm !pwhisker_right_refl⁻¹, refine ap (pwhisker_right f) !refl_symm ⬝ !pwhisker_right_refl ⬝ !refl_symm⁻¹ end definition trans_eq_of_eq_symm_trans {A B : Type*} {f g h : A →* B} {p : f ~* g} {q : g ~* h} {r : f ~* h} (s : q = p⁻¹* ⬝* r) : p ⬝* q = r := idp ◾** s ⬝ !trans_assoc⁻¹ ⬝ trans_right_inv p ◾** idp ⬝ !refl_trans definition eq_symm_trans_of_trans_eq {A B : Type*} {f g h : A →* B} {p : f ~* g} {q : g ~* h} {r : f ~* h} (s : p ⬝* q = r) : q = p⁻¹* ⬝* r := !refl_trans⁻¹ ⬝ !trans_left_inv⁻¹ ◾** idp ⬝ !trans_assoc ⬝ idp ◾** s definition trans_eq_of_eq_trans_symm {A B : Type*} {f g h : A →* B} {p : f ~* g} {q : g ~* h} {r : f ~* h} (s : p = r ⬝* q⁻¹*) : p ⬝* q = r := s ◾** idp ⬝ !trans_assoc ⬝ idp ◾** trans_left_inv q ⬝ !trans_refl definition eq_trans_symm_of_trans_eq {A B : Type*} {f g h : A →* B} {p : f ~* g} {q : g ~* h} {r : f ~* h} (s : p ⬝* q = r) : p = r ⬝* q⁻¹* := !trans_refl⁻¹ ⬝ idp ◾** !trans_right_inv⁻¹ ⬝ !trans_assoc⁻¹ ⬝ s ◾** idp definition eq_trans_of_symm_trans_eq {A B : Type*} {f g h : A →* B} {p : f ~* g} {q : g ~* h} {r : f ~* h} (s : p⁻¹* ⬝* r = q) : r = p ⬝* q := !refl_trans⁻¹ ⬝ !trans_right_inv⁻¹ ◾** idp ⬝ !trans_assoc ⬝ idp ◾** s definition symm_trans_eq_of_eq_trans {A B : Type*} {f g h : A →* B} {p : f ~* g} {q : g ~* h} {r : f ~* h} (s : r = p ⬝* q) : p⁻¹* ⬝* r = q := idp ◾** s ⬝ !trans_assoc⁻¹ ⬝ trans_left_inv p ◾** idp ⬝ !refl_trans definition eq_trans_of_trans_symm_eq {A B : Type*} {f g h : A →* B} {p : f ~* g} {q : g ~* h} {r : f ~* h} (s : r ⬝* q⁻¹* = p) : r = p ⬝* q := !trans_refl⁻¹ ⬝ idp ◾** !trans_left_inv⁻¹ ⬝ !trans_assoc⁻¹ ⬝ s ◾** idp definition trans_symm_eq_of_eq_trans {A B : Type*} {f g h : A →* B} {p : f ~* g} {q : g ~* h} {r : f ~* h} (s : r = p ⬝* q) : r ⬝* q⁻¹* = p := s ◾** idp ⬝ !trans_assoc ⬝ idp ◾** trans_right_inv q ⬝ !trans_refl section phsquare /- Squares of pointed homotopies -/ variables {A B C : Type*} {f f' f₀₀ f₂₀ f₄₀ f₀₂ f₂₂ f₄₂ f₀₄ f₂₄ f₄₄ : A →* B} {p₁₀ : f₀₀ ~* f₂₀} {p₃₀ : f₂₀ ~* f₄₀} {p₀₁ : f₀₀ ~* f₀₂} {p₂₁ : f₂₀ ~* f₂₂} {p₄₁ : f₄₀ ~* f₄₂} {p₁₂ : f₀₂ ~* f₂₂} {p₃₂ : f₂₂ ~* f₄₂} {p₀₃ : f₀₂ ~* f₀₄} {p₂₃ : f₂₂ ~* f₂₄} {p₄₃ : f₄₂ ~* f₄₄} {p₁₄ : f₀₄ ~* f₂₄} {p₃₄ : f₂₄ ~* f₄₄} definition phsquare [reducible] (p₁₀ : f₀₀ ~* f₂₀) (p₁₂ : f₀₂ ~* f₂₂) (p₀₁ : f₀₀ ~* f₀₂) (p₂₁ : f₂₀ ~* f₂₂) : Type := p₁₀ ⬝* p₂₁ = p₀₁ ⬝* p₁₂ definition phsquare_of_eq (p : p₁₀ ⬝* p₂₁ = p₀₁ ⬝* p₁₂) : phsquare p₁₀ p₁₂ p₀₁ p₂₁ := p definition eq_of_phsquare (p : phsquare p₁₀ p₁₂ p₀₁ p₂₁) : p₁₀ ⬝* p₂₁ = p₀₁ ⬝* p₁₂ := p -- definition phsquare.mk (p : Πx, square (p₁₀ x) (p₁₂ x) (p₀₁ x) (p₂₁ x)) -- (q : cube (square_of_eq (to_homotopy_pt p₁₀)) (square_of_eq (to_homotopy_pt p₁₂)) -- (square_of_eq (to_homotopy_pt p₀₁)) (square_of_eq (to_homotopy_pt p₂₁)) -- (p pt) ids) : phsquare p₁₀ p₁₂ p₀₁ p₂₁ := -- begin -- fapply phomotopy_eq, -- { intro x, apply eq_of_square (p x) }, -- { generalize p pt, intro r, exact sorry } -- end definition phhconcat (p : phsquare p₁₀ p₁₂ p₀₁ p₂₁) (q : phsquare p₃₀ p₃₂ p₂₁ p₄₁) : phsquare (p₁₀ ⬝* p₃₀) (p₁₂ ⬝* p₃₂) p₀₁ p₄₁ := !trans_assoc ⬝ idp ◾** q ⬝ !trans_assoc⁻¹ ⬝ p ◾** idp ⬝ !trans_assoc definition phvconcat (p : phsquare p₁₀ p₁₂ p₀₁ p₂₁) (q : phsquare p₁₂ p₁₄ p₀₃ p₂₃) : phsquare p₁₀ p₁₄ (p₀₁ ⬝* p₀₃) (p₂₁ ⬝* p₂₃) := (phhconcat p⁻¹ q⁻¹)⁻¹ definition phhdeg_square {p₁ p₂ : f ~* f'} (q : p₁ = p₂) : phsquare phomotopy.rfl phomotopy.rfl p₁ p₂ := !refl_trans ⬝ q⁻¹ ⬝ !trans_refl⁻¹ definition phvdeg_square {p₁ p₂ : f ~* f'} (q : p₁ = p₂) : phsquare p₁ p₂ phomotopy.rfl phomotopy.rfl := !trans_refl ⬝ q ⬝ !refl_trans⁻¹ variables (p₀₁ p₁₀) definition phhrefl : phsquare phomotopy.rfl phomotopy.rfl p₀₁ p₀₁ := phhdeg_square idp definition phvrefl : phsquare p₁₀ p₁₀ phomotopy.rfl phomotopy.rfl := phvdeg_square idp variables {p₀₁ p₁₀} definition phhrfl : phsquare phomotopy.rfl phomotopy.rfl p₀₁ p₀₁ := phhrefl p₀₁ definition phvrfl : phsquare p₁₀ p₁₀ phomotopy.rfl phomotopy.rfl := phvrefl p₁₀ /- The names are very baroque. The following stands for "pointed homotopy path-horizontal composition" (i.e. composition on the left with a path) The names are obtained by using the ones for squares, and putting "ph" in front of it. In practice, use the notation ⬝ph** defined below, which might be easier to remember -/ definition phphconcat {p₀₁'} (p : p₀₁' = p₀₁) (q : phsquare p₁₀ p₁₂ p₀₁ p₂₁) : phsquare p₁₀ p₁₂ p₀₁' p₂₁ := by induction p; exact q definition phhpconcat {p₂₁'} (q : phsquare p₁₀ p₁₂ p₀₁ p₂₁) (p : p₂₁ = p₂₁') : phsquare p₁₀ p₁₂ p₀₁ p₂₁' := by induction p; exact q definition phpvconcat {p₁₀'} (p : p₁₀' = p₁₀) (q : phsquare p₁₀ p₁₂ p₀₁ p₂₁) : phsquare p₁₀' p₁₂ p₀₁ p₂₁ := by induction p; exact q definition phvpconcat {p₁₂'} (q : phsquare p₁₀ p₁₂ p₀₁ p₂₁) (p : p₁₂ = p₁₂') : phsquare p₁₀ p₁₂' p₀₁ p₂₁ := by induction p; exact q definition phhinverse (p : phsquare p₁₀ p₁₂ p₀₁ p₂₁) : phsquare p₁₀⁻¹* p₁₂⁻¹* p₂₁ p₀₁ := begin refine (eq_symm_trans_of_trans_eq _)⁻¹, refine !trans_assoc⁻¹ ⬝ _, refine (eq_trans_symm_of_trans_eq _)⁻¹, exact (eq_of_phsquare p)⁻¹ end definition phvinverse (p : phsquare p₁₀ p₁₂ p₀₁ p₂₁) : phsquare p₁₂ p₁₀ p₀₁⁻¹* p₂₁⁻¹* := (phhinverse p⁻¹)⁻¹ infix ` ⬝h** `:78 := phhconcat infix ` ⬝v** `:78 := phvconcat infixr ` ⬝ph** `:77 := phphconcat infixl ` ⬝hp** `:77 := phhpconcat infixr ` ⬝pv** `:77 := phpvconcat infixl ` ⬝vp** `:77 := phvpconcat postfix `⁻¹ʰ**`:(max+1) := phhinverse postfix `⁻¹ᵛ**`:(max+1) := phvinverse definition phwhisker_rt (p : f ~* f₂₀) (q : phsquare p₁₀ p₁₂ p₀₁ p₂₁) : phsquare (p₁₀ ⬝* p⁻¹*) p₁₂ p₀₁ (p ⬝* p₂₁) := !trans_assoc ⬝ idp ◾** (!trans_assoc⁻¹ ⬝ !trans_left_inv ◾** idp ⬝ !refl_trans) ⬝ q definition phwhisker_br (p : f₂₂ ~* f) (q : phsquare p₁₀ p₁₂ p₀₁ p₂₁) : phsquare p₁₀ (p₁₂ ⬝* p) p₀₁ (p₂₁ ⬝* p) := !trans_assoc⁻¹ ⬝ q ◾** idp ⬝ !trans_assoc definition phmove_top_of_left' {p₀₁ : f ~* f₀₂} (p : f₀₀ ~* f) (q : phsquare p₁₀ p₁₂ (p ⬝* p₀₁) p₂₁) : phsquare (p⁻¹* ⬝* p₁₀) p₁₂ p₀₁ p₂₁ := !trans_assoc ⬝ (eq_symm_trans_of_trans_eq (q ⬝ !trans_assoc)⁻¹)⁻¹ definition phmove_bot_of_left {p₀₁ : f₀₀ ~* f} (p : f ~* f₀₂) (q : phsquare p₁₀ p₁₂ (p₀₁ ⬝* p) p₂₁) : phsquare p₁₀ (p ⬝* p₁₂) p₀₁ p₂₁ := q ⬝ !trans_assoc definition passoc_phomotopy_right {A B C D : Type*} (h : C →* D) (g : B →* C) {f f' : A →* B} (p : f ~* f') : phsquare (passoc h g f) (passoc h g f') (pwhisker_left (h ∘* g) p) (pwhisker_left h (pwhisker_left g p)) := begin induction p using phomotopy_rec_on_idp, refine idp ◾** (ap (pwhisker_left h) !pwhisker_left_refl ⬝ !pwhisker_left_refl) ⬝ _ ⬝ !pwhisker_left_refl⁻¹ ◾** idp, exact !trans_refl ⬝ !refl_trans⁻¹ end theorem passoc_phomotopy_middle {A B C D : Type*} (h : C →* D) {g g' : B →* C} (f : A →* B) (p : g ~* g') : phsquare (passoc h g f) (passoc h g' f) (pwhisker_right f (pwhisker_left h p)) (pwhisker_left h (pwhisker_right f p)) := begin induction p using phomotopy_rec_on_idp, rewrite [pwhisker_right_refl, pwhisker_left_refl], rewrite [pwhisker_right_refl, pwhisker_left_refl], exact phvrfl end definition pwhisker_right_pwhisker_left {A B C : Type*} {g g' : B →* C} {f f' : A →* B} (p : g ~* g') (q : f ~* f') : phsquare (pwhisker_right f p) (pwhisker_right f' p) (pwhisker_left g q) (pwhisker_left g' q) := begin induction p using phomotopy_rec_on_idp, induction q using phomotopy_rec_on_idp, exact !pwhisker_right_refl ◾** !pwhisker_left_refl ⬝ !pwhisker_left_refl⁻¹ ◾** !pwhisker_right_refl⁻¹ end definition pwhisker_left_phsquare (f : B →* C) (p : phsquare p₁₀ p₁₂ p₀₁ p₂₁) : phsquare (pwhisker_left f p₁₀) (pwhisker_left f p₁₂) (pwhisker_left f p₀₁) (pwhisker_left f p₂₁) := !pwhisker_left_trans⁻¹ ⬝ ap (pwhisker_left f) p ⬝ !pwhisker_left_trans definition pwhisker_right_phsquare (f : C →* A) (p : phsquare p₁₀ p₁₂ p₀₁ p₂₁) : phsquare (pwhisker_right f p₁₀) (pwhisker_right f p₁₂) (pwhisker_right f p₀₁) (pwhisker_right f p₂₁) := !pwhisker_right_trans⁻¹ ⬝ ap (pwhisker_right f) p ⬝ !pwhisker_right_trans end phsquare definition phomotopy_of_eq_con {A B : Type*} {f g h : A →* B} (p : f = g) (q : g = h) : phomotopy_of_eq (p ⬝ q) = phomotopy_of_eq p ⬝* phomotopy_of_eq q := begin induction q, induction p, exact !trans_refl⁻¹ end definition pcompose_left_eq_of_phomotopy {A B C : Type*} (g : B →* C) {f f' : A →* B} (H : f ~* f') : ap (λf, g ∘* f) (eq_of_phomotopy H) = eq_of_phomotopy (pwhisker_left g H) := begin induction H using phomotopy_rec_on_idp, refine ap02 _ !eq_of_phomotopy_refl ⬝ !eq_of_phomotopy_refl⁻¹ ⬝ ap eq_of_phomotopy _, exact !pwhisker_left_refl⁻¹ end definition pcompose_right_eq_of_phomotopy {A B C : Type*} {g g' : B →* C} (f : A →* B) (H : g ~* g') : ap (λg, g ∘* f) (eq_of_phomotopy H) = eq_of_phomotopy (pwhisker_right f H) := begin induction H using phomotopy_rec_on_idp, refine ap02 _ !eq_of_phomotopy_refl ⬝ !eq_of_phomotopy_refl⁻¹ ⬝ ap eq_of_phomotopy _, exact !pwhisker_right_refl⁻¹ end definition phomotopy_of_eq_pcompose_left {A B C : Type*} (g : B →* C) {f f' : A →* B} (p : f = f') : phomotopy_of_eq (ap (λf, g ∘* f) p) = pwhisker_left g (phomotopy_of_eq p) := begin induction p, exact !pwhisker_left_refl⁻¹ end definition phomotopy_of_eq_pcompose_right {A B C : Type*} {g g' : B →* C} (f : A →* B) (p : g = g') : phomotopy_of_eq (ap (λg, g ∘* f) p) = pwhisker_right f (phomotopy_of_eq p) := begin induction p, exact !pwhisker_right_refl⁻¹ end definition ap1_phomotopy_refl {X Y : Type*} (f : X →* Y) : ap1_phomotopy (phomotopy.refl f) = phomotopy.refl (Ω→ f) := begin -- induction X with X x₀, induction Y with Y y₀, induction f with f f₀, esimp at *, induction f₀, -- fapply phomotopy_eq, -- { intro x, unfold [ap1_phomotopy], }, -- { } exact sorry end definition ap1_eq_of_phomotopy {A B : Type*} {f g : A →* B} (p : f ~* g) : ap Ω→ (eq_of_phomotopy p) = eq_of_phomotopy (ap1_phomotopy p) := begin induction p using phomotopy_rec_on_idp, refine ap02 _ !eq_of_phomotopy_refl ⬝ !eq_of_phomotopy_refl⁻¹ ⬝ ap eq_of_phomotopy _, exact !ap1_phomotopy_refl⁻¹ end -- duplicate of ap_eq_of_phomotopy definition to_fun_eq_of_phomotopy {A B : Type*} {f g : A →* B} (p : f ~* g) (a : A) : ap010 pmap.to_fun (eq_of_phomotopy p) a = p a := begin induction p using phomotopy_rec_on_idp, exact ap (λx, ap010 pmap.to_fun x a) !eq_of_phomotopy_refl end definition respect_pt_pcompose {A B C : Type*} (g : B →* C) (f : A →* B) : respect_pt (g ∘* f) = ap g (respect_pt f) ⬝ respect_pt g := idp definition phomotopy_mk_ppmap [constructor] {A B C : Type*} {f g : A →* ppmap B C} (p : Πa, f a ~* g a) (q : p pt ⬝* phomotopy_of_eq (respect_pt g) = phomotopy_of_eq (respect_pt f)) : f ~* g := begin apply phomotopy.mk (λa, eq_of_phomotopy (p a)), apply eq_of_fn_eq_fn (pmap_eq_equiv _ _), esimp [pmap_eq_equiv], refine !phomotopy_of_eq_con ⬝ _, refine !phomotopy_of_eq_of_phomotopy ◾** idp ⬝ q, end definition pconst_pcompose_pconst (A B C : Type*) : pconst_pcompose (pconst A B) = pcompose_pconst (pconst B C) := idp definition pconst_pcompose_phomotopy_pconst {A B C : Type*} {f : A →* B} (p : f ~* pconst A B) : pconst_pcompose f = pwhisker_left (pconst B C) p ⬝* pcompose_pconst (pconst B C) := begin assert H : Π(p : pconst A B ~* f), pconst_pcompose f = pwhisker_left (pconst B C) p⁻¹* ⬝* pcompose_pconst (pconst B C), { intro p, induction p using phomotopy_rec_on_idp, reflexivity }, refine H p⁻¹* ⬝ ap (pwhisker_left _) !symm_symm ◾** idp, end definition passoc_pconst_right {A B C D : Type*} (h : C →* D) (g : B →* C) : passoc h g (pconst A B) ⬝* (pwhisker_left h (pcompose_pconst g) ⬝* pcompose_pconst h) = pcompose_pconst (h ∘* g) := begin fapply phomotopy_eq, { intro a, exact !idp_con }, { induction h with h h₀, induction g with g g₀, induction D with D d₀, induction C with C c₀, esimp at *, induction g₀, induction h₀, reflexivity } end definition passoc_pconst_middle {A A' B B' : Type*} (g : B →* B') (f : A' →* A) : passoc g (pconst A B) f ⬝* (pwhisker_left g (pconst_pcompose f) ⬝* pcompose_pconst g) = pwhisker_right f (pcompose_pconst g) ⬝* pconst_pcompose f := begin fapply phomotopy_eq, { intro a, exact !idp_con ⬝ !idp_con }, { induction g with g g₀, induction f with f f₀, induction B' with D d₀, induction A with C c₀, esimp at *, induction g₀, induction f₀, reflexivity } end definition passoc_pconst_left {A B C D : Type*} (g : B →* C) (f : A →* B) : phsquare (passoc (pconst C D) g f) (pconst_pcompose f) (pwhisker_right f (pconst_pcompose g)) (pconst_pcompose (g ∘* f)) := begin fapply phomotopy_eq, { intro a, exact !idp_con }, { induction g with g g₀, induction f with f f₀, induction C with C c₀, induction B with B b₀, esimp at *, induction g₀, induction f₀, reflexivity } end definition ppcompose_left_pcompose [constructor] {A B C D : Type*} (h : C →* D) (g : B →* C) : @ppcompose_left A _ _ (h ∘* g) ~* ppcompose_left h ∘* ppcompose_left g := begin fapply phomotopy_mk_ppmap, { exact passoc h g }, { refine idp ◾** (!phomotopy_of_eq_con ⬝ (ap phomotopy_of_eq !pcompose_left_eq_of_phomotopy ⬝ !phomotopy_of_eq_of_phomotopy) ◾** !phomotopy_of_eq_of_phomotopy) ⬝ _ ⬝ !phomotopy_of_eq_of_phomotopy⁻¹, exact passoc_pconst_right h g } end definition ppcompose_right_pcompose [constructor] {A B C D : Type*} (g : B →* C) (f : A →* B) : @ppcompose_right _ _ D (g ∘* f) ~* ppcompose_right f ∘* ppcompose_right g := begin symmetry, fapply phomotopy_mk_ppmap, { intro h, exact passoc h g f }, { refine idp ◾** !phomotopy_of_eq_of_phomotopy ⬝ _ ⬝ (!phomotopy_of_eq_con ⬝ (ap phomotopy_of_eq !pcompose_right_eq_of_phomotopy ⬝ !phomotopy_of_eq_of_phomotopy) ◾** !phomotopy_of_eq_of_phomotopy)⁻¹, exact passoc_pconst_left g f } end definition ppcompose_left_ppcompose_right {A A' B B' : Type*} (g : B →* B') (f : A' →* A) : psquare (ppcompose_left g) (ppcompose_left g) (ppcompose_right f) (ppcompose_right f) := begin fapply phomotopy_mk_ppmap, { intro h, exact passoc g h f }, { refine idp ◾** (!phomotopy_of_eq_con ⬝ (ap phomotopy_of_eq !pcompose_left_eq_of_phomotopy ⬝ !phomotopy_of_eq_of_phomotopy) ◾** !phomotopy_of_eq_of_phomotopy) ⬝ _ ⬝ (!phomotopy_of_eq_con ⬝ (ap phomotopy_of_eq !pcompose_right_eq_of_phomotopy ⬝ !phomotopy_of_eq_of_phomotopy) ◾** !phomotopy_of_eq_of_phomotopy)⁻¹, apply passoc_pconst_middle } end definition pcompose_pconst_phomotopy {A B C : Type*} {f f' : B →* C} (p : f ~* f') : pwhisker_right (pconst A B) p ⬝* pcompose_pconst f' = pcompose_pconst f := begin fapply phomotopy_eq, { intro a, exact to_homotopy_pt p }, { induction p using phomotopy_rec_on_idp, induction C with C c₀, induction f with f f₀, esimp at *, induction f₀, reflexivity } end definition pid_pconst (A B : Type*) : pcompose_pconst (pid B) = pid_pcompose (pconst A B) := by reflexivity definition pid_pconst_pcompose {A B C : Type*} (f : A →* B) : phsquare (pid_pcompose (pconst B C ∘* f)) (pcompose_pconst (pid C)) (pwhisker_left (pid C) (pconst_pcompose f)) (pconst_pcompose f) := begin fapply phomotopy_eq, { reflexivity }, { induction f with f f₀, induction B with B b₀, esimp at *, induction f₀, reflexivity } end definition ppcompose_left_pconst [constructor] (A B C : Type*) : @ppcompose_left A _ _ (pconst B C) ~* pconst (ppmap A B) (ppmap A C) := begin fapply phomotopy_mk_ppmap, { exact pconst_pcompose }, { refine idp ◾** !phomotopy_of_eq_idp ⬝ !phomotopy_of_eq_of_phomotopy⁻¹ } end definition ppcompose_left_phomotopy [constructor] {A B C : Type*} {g g' : B →* C} (p : g ~* g') : @ppcompose_left A _ _ g ~* ppcompose_left g' := begin induction p using phomotopy_rec_on_idp, reflexivity end definition ppcompose_right_phomotopy [constructor] {A B C : Type*} {f f' : A →* B} (p : f ~* f') : @ppcompose_right _ _ C f ~* ppcompose_right f' := begin induction p using phomotopy_rec_on_idp, reflexivity end definition pppcompose [constructor] (A B C : Type*) : ppmap B C →* ppmap (ppmap A B) (ppmap A C) := pmap.mk ppcompose_left (eq_of_phomotopy !ppcompose_left_pconst) section psquare variables {A A' A₀₀ A₂₀ A₄₀ A₀₂ A₂₂ A₄₂ A₀₄ A₂₄ A₄₄ : Type*} {f₁₀ f₁₀' : A₀₀ →* A₂₀} {f₃₀ : A₂₀ →* A₄₀} {f₀₁ f₀₁' : A₀₀ →* A₀₂} {f₂₁ f₂₁' : A₂₀ →* A₂₂} {f₄₁ : A₄₀ →* A₄₂} {f₁₂ f₁₂' : A₀₂ →* A₂₂} {f₃₂ : A₂₂ →* A₄₂} {f₀₃ : A₀₂ →* A₀₄} {f₂₃ : A₂₂ →* A₂₄} {f₄₃ : A₄₂ →* A₄₄} {f₁₄ : A₀₄ →* A₂₄} {f₃₄ : A₂₄ →* A₄₄} definition ppcompose_left_psquare {A : Type*} (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) : psquare (@ppcompose_left A _ _ f₁₀) (ppcompose_left f₁₂) (ppcompose_left f₀₁) (ppcompose_left f₂₁) := !ppcompose_left_pcompose⁻¹* ⬝* ppcompose_left_phomotopy p ⬝* !ppcompose_left_pcompose definition ppcompose_right_psquare {A : Type*} (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) : psquare (@ppcompose_right _ _ A f₁₂) (ppcompose_right f₁₀) (ppcompose_right f₂₁) (ppcompose_right f₀₁) := !ppcompose_right_pcompose⁻¹* ⬝* ppcompose_right_phomotopy p⁻¹* ⬝* !ppcompose_right_pcompose definition trans_phomotopy_hconcat {f₀₁' f₀₁''} (q₂ : f₀₁'' ~* f₀₁') (q₁ : f₀₁' ~* f₀₁) (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) : (q₂ ⬝* q₁) ⬝ph* p = q₂ ⬝ph* q₁ ⬝ph* p := idp ◾** (ap (pwhisker_left f₁₂) !trans_symm ⬝ !pwhisker_left_trans) ⬝ !trans_assoc⁻¹ definition symm_phomotopy_hconcat {f₀₁'} (q : f₀₁ ~* f₀₁') (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) : q⁻¹* ⬝ph* p = p ⬝* pwhisker_left f₁₂ q := idp ◾** ap (pwhisker_left f₁₂) !symm_symm definition refl_phomotopy_hconcat (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) : phomotopy.rfl ⬝ph* p = p := idp ◾** (ap (pwhisker_left _) !refl_symm ⬝ !pwhisker_left_refl) ⬝ !trans_refl local attribute phomotopy.rfl [reducible] theorem pwhisker_left_phomotopy_hconcat {f₀₁'} (r : f₀₁' ~* f₀₁) (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) (q : psquare f₁₂ f₁₄ f₀₃ f₂₃) : pwhisker_left f₀₃ r ⬝ph* (p ⬝v* q) = (r ⬝ph* p) ⬝v* q := by induction r using phomotopy_rec_on_idp; rewrite [pwhisker_left_refl, +refl_phomotopy_hconcat] theorem pvcompose_pwhisker_left {f₀₁'} (r : f₀₁ ~* f₀₁') (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) (q : psquare f₁₂ f₁₄ f₀₃ f₂₃) : (p ⬝v* q) ⬝* (pwhisker_left f₁₄ (pwhisker_left f₀₃ r)) = (p ⬝* pwhisker_left f₁₂ r) ⬝v* q := by induction r using phomotopy_rec_on_idp; rewrite [+pwhisker_left_refl, + trans_refl] definition phconcat2 {p p' : psquare f₁₀ f₁₂ f₀₁ f₂₁} {q q' : psquare f₃₀ f₃₂ f₂₁ f₄₁} (r : p = p') (s : q = q') : p ⬝h* q = p' ⬝h* q' := ap011 phconcat r s definition pvconcat2 {p p' : psquare f₁₀ f₁₂ f₀₁ f₂₁} {q q' : psquare f₁₂ f₁₄ f₀₃ f₂₃} (r : p = p') (s : q = q') : p ⬝v* q = p' ⬝v* q' := ap011 pvconcat r s definition phinverse2 {f₁₀ : A₀₀ ≃* A₂₀} {f₁₂ : A₀₂ ≃* A₂₂} {p p' : psquare f₁₀ f₁₂ f₀₁ f₂₁} (r : p = p') : p⁻¹ʰ* = p'⁻¹ʰ* := ap phinverse r definition pvinverse2 {f₀₁ : A₀₀ ≃* A₀₂} {f₂₁ : A₂₀ ≃* A₂₂} {p p' : psquare f₁₀ f₁₂ f₀₁ f₂₁} (r : p = p') : p⁻¹ᵛ* = p'⁻¹ᵛ* := ap pvinverse r definition phomotopy_hconcat2 {q q' : f₀₁' ~* f₀₁} {p p' : psquare f₁₀ f₁₂ f₀₁ f₂₁} (r : q = q') (s : p = p') : q ⬝ph* p = q' ⬝ph* p' := ap011 phomotopy_hconcat r s definition hconcat_phomotopy2 {p p' : psquare f₁₀ f₁₂ f₀₁ f₂₁} {q q' : f₂₁' ~* f₂₁} (r : p = p') (s : q = q') : p ⬝hp* q = p' ⬝hp* q' := ap011 hconcat_phomotopy r s definition phomotopy_vconcat2 {q q' : f₁₀' ~* f₁₀} {p p' : psquare f₁₀ f₁₂ f₀₁ f₂₁} (r : q = q') (s : p = p') : q ⬝pv* p = q' ⬝pv* p' := ap011 phomotopy_vconcat r s definition vconcat_phomotopy2 {p p' : psquare f₁₀ f₁₂ f₀₁ f₂₁} {q q' : f₁₂' ~* f₁₂} (r : p = p') (s : q = q') : p ⬝vp* q = p' ⬝vp* q' := ap011 vconcat_phomotopy r s -- for consistency, should there be a second star here? infix ` ◾h* `:79 := phconcat2 infix ` ◾v* `:79 := pvconcat2 infixl ` ◾hp* `:79 := hconcat_phomotopy2 infixr ` ◾ph* `:79 := phomotopy_hconcat2 infixl ` ◾vp* `:79 := vconcat_phomotopy2 infixr ` ◾pv* `:79 := phomotopy_vconcat2 postfix `⁻²ʰ*`:(max+1) := phinverse2 postfix `⁻²ᵛ*`:(max+1) := pvinverse2 end psquare /- a more explicit proof of ppcompose_left_phomotopy, which might be useful if we need to prove properties about it -/ -- fapply phomotopy_mk_ppmap, -- { intro f, exact pwhisker_right f p }, -- { refine ap (λx, _ ⬝* x) !phomotopy_of_eq_of_phomotopy ⬝ _ ⬝ !phomotopy_of_eq_of_phomotopy⁻¹, -- exact pcompose_pconst_phomotopy p } definition ppcompose_left_phomotopy_refl {A B C : Type*} (g : B →* C) : ppcompose_left_phomotopy (phomotopy.refl g) = phomotopy.refl (@ppcompose_left A _ _ g) := !phomotopy_rec_on_idp_refl -- definition pmap_eq_equiv {X Y : Type*} (f g : X →* Y) : (f = g) ≃ (f ~* g) := -- begin -- refine eq_equiv_fn_eq_of_equiv (@pmap.sigma_char X Y) f g ⬝e _, -- refine !sigma_eq_equiv ⬝e _, -- refine _ ⬝e (phomotopy.sigma_char f g)⁻¹ᵉ, -- fapply sigma_equiv_sigma, -- { esimp, apply eq_equiv_homotopy }, -- { induction g with g gp, induction Y with Y y0, esimp, intro p, induction p, esimp at *, -- refine !pathover_idp ⬝e _, refine _ ⬝e !eq_equiv_eq_symm, -- apply equiv_eq_closed_right, exact !idp_con⁻¹ } -- end definition pmap_eq_idp {X Y : Type*} (f : X →* Y) : pmap_eq (λx, idpath (f x)) !idp_con⁻¹ = idpath f := ap (λx, eq_of_phomotopy (phomotopy.mk _ x)) !inv_inv ⬝ eq_of_phomotopy_refl f definition pfunext (X Y : Type*) : ppmap X (Ω Y) ≃* Ω (ppmap X Y) := (loop_pmap_commute X Y)⁻¹ᵉ* definition loop_phomotopy [constructor] {A B : Type*} (f : A →* B) : Type* := pointed.MK (f ~* f) phomotopy.rfl definition ppcompose_left_loop_phomotopy [constructor] {A B C : Type*} (g : B →* C) {f : A →* B} {h : A →* C} (p : g ∘* f ~* h) : loop_phomotopy f →* loop_phomotopy h := pmap.mk (λq, p⁻¹* ⬝* pwhisker_left g q ⬝* p) (idp ◾** !pwhisker_left_refl ◾** idp ⬝ !trans_refl ◾** idp ⬝ !trans_left_inv) definition ppcompose_left_loop_phomotopy' [constructor] {A B C : Type*} (g : B →* C) (f : A →* B) : loop_phomotopy f →* loop_phomotopy (g ∘* f) := pmap.mk (λq, pwhisker_left g q) !pwhisker_left_refl definition ppcompose_left_loop_phomotopy_refl {A B C : Type*} (g : B →* C) (f : A →* B) : ppcompose_left_loop_phomotopy g phomotopy.rfl ~* ppcompose_left_loop_phomotopy' g f := phomotopy.mk (λq, !refl_symm ◾** idp ◾** idp ⬝ !refl_trans ◾** idp ⬝ !trans_refl) begin esimp, exact sorry end definition loop_ppmap_pequiv' [constructor] (A B : Type*) : Ω(ppmap A B) ≃* loop_phomotopy (pconst A B) := pequiv_of_equiv (pmap_eq_equiv _ _) idp -- definition loop_ppmap (A B : Type*) : pointed.MK (pconst A B ~* pconst A B) phomotopy.rfl ≃* -- pointed.MK (Σ(p : pconst A B ~ pconst A B), p pt ⬝ rfl = rfl) ⟨homotopy.rfl, idp⟩ := -- pequiv_of_equiv !phomotopy.sigma_char _ definition ppmap_loop_pequiv' [constructor] (A B : Type*) : loop_phomotopy (pconst A B) ≃* ppmap A (Ω B) := pequiv_of_equiv (!phomotopy.sigma_char ⬝e !pmap.sigma_char⁻¹ᵉ) idp definition loop_ppmap_pequiv [constructor] (A B : Type*) : Ω(ppmap A B) ≃* ppmap A (Ω B) := loop_ppmap_pequiv' A B ⬝e* ppmap_loop_pequiv' A B definition loop_ppmap_pequiv'_natural_right' {X X' : Type} (x₀ : X) (A : Type*) (f : X → X') : psquare (loop_ppmap_pequiv' A _) (loop_ppmap_pequiv' A _) (Ω→ (ppcompose_left (pmap_of_map f x₀))) (ppcompose_left_loop_phomotopy' (pmap_of_map f x₀) !pconst) := begin fapply phomotopy.mk, { esimp, intro p, refine _ ⬝ ap011 (λx y, phomotopy_of_eq (ap1_gen _ x y _)) proof !eq_of_phomotopy_refl⁻¹ qed proof !eq_of_phomotopy_refl⁻¹ qed, refine _ ⬝ ap phomotopy_of_eq !ap1_gen_idp_left⁻¹, exact !phomotopy_of_eq_pcompose_left⁻¹ }, { refine _ ⬝ !idp_con⁻¹, exact sorry } end definition loop_ppmap_pequiv'_natural_right {X X' : Type*} (A : Type*) (f : X →* X') : psquare (loop_ppmap_pequiv' A X) (loop_ppmap_pequiv' A X') (Ω→ (ppcompose_left f)) (ppcompose_left_loop_phomotopy f !pcompose_pconst) := begin induction X' with X' x₀', induction f with f f₀, esimp at f, esimp at f₀, induction f₀, apply psquare_of_phomotopy, exact sorry -- fapply phomotopy.mk, -- { esimp, esimp [pmap_eq_equiv], intro p, }, -- { } end definition ppmap_loop_pequiv'_natural_right {X X' : Type*} (A : Type*) (f : X →* X') : psquare (ppmap_loop_pequiv' A X) (ppmap_loop_pequiv' A X') (ppcompose_left_loop_phomotopy f !pcompose_pconst) (ppcompose_left (Ω→ f)) := begin exact sorry end definition loop_pmap_commute_natural_right_direct {X X' : Type*} (A : Type*) (f : X →* X') : psquare (loop_ppmap_pequiv A X) (loop_ppmap_pequiv A X') (Ω→ (ppcompose_left f)) (ppcompose_left (Ω→ f)) := begin induction X' with X' x₀', induction f with f f₀, esimp at f, esimp at f₀, induction f₀, -- refine _ ⬝* _ ◾* _, rotate 4, fapply phomotopy.mk, { intro p, esimp, esimp [pmap_eq_equiv, pcompose_pconst], exact sorry }, { exact sorry } end definition loop_pmap_commute_natural_left {A A' : Type*} (X : Type*) (f : A' →* A) : psquare (loop_pmap_commute A X) (loop_pmap_commute A' X) (Ω→ (ppcompose_right f)) (ppcompose_right f) := sorry definition loop_pmap_commute_natural_right {X X' : Type*} (A : Type*) (f : X →* X') : psquare (loop_pmap_commute A X) (loop_pmap_commute A X') (Ω→ (ppcompose_left f)) (ppcompose_left (Ω→ f)) := loop_ppmap_pequiv'_natural_right A f ⬝h* ppmap_loop_pequiv'_natural_right A f /- Do we want to use a structure of homotopies between pointed homotopies? Or are equalities fine? If we set up things more generally, we could define this as "pointed homotopies between the dependent pointed maps p and q" -/ structure phomotopy2 {A B : Type*} {f g : A →* B} (p q : f ~* g) : Type := (homotopy_eq : p ~ q) (homotopy_pt_eq : whisker_right (respect_pt g) (homotopy_eq pt) ⬝ to_homotopy_pt q = to_homotopy_pt p) /- this sets it up more generally, for illustrative purposes -/ structure ppi' (A : Type*) (P : A → Type) (p : P pt) := (to_fun : Π a : A, P a) (resp_pt : to_fun (Point A) = p) attribute ppi'.to_fun [coercion] definition ppi_homotopy' {A : Type*} {P : A → Type} {x : P pt} (f g : ppi' A P x) : Type := ppi' A (λa, f a = g a) (ppi'.resp_pt f ⬝ (ppi'.resp_pt g)⁻¹) definition ppi_homotopy2' {A : Type*} {P : A → Type} {x : P pt} {f g : ppi' A P x} (p q : ppi_homotopy' f g) : Type := ppi_homotopy' p q -- infix ` ~*2 `:50 := phomotopy2 -- variables {A B : Type*} {f g : A →* B} (p q : f ~* g) -- definition phomotopy_eq_equiv_phomotopy2 : p = q ≃ p ~*2 q := -- sorry end pointed