import .spectrum .EM -- TODO move this open trunc_index nat namespace int section private definition maxm2_le.lemma₁ {n k : ℕ} : n+(1:int) + -[1+ k] ≤ n := le.intro ( calc n + 1 + -[1+ k] + k = n + 1 - (k + 1) + k : by reflexivity ... = n : sorry) private definition maxm2_le.lemma₂ {n : ℕ} {k : ℤ} : -[1+ n] + 1 + k ≤ k := le.intro ( calc -[1+ n] + 1 + k + n = - (n + 1) + 1 + k + n : by reflexivity ... = k : sorry) definition maxm2_le (n k : ℤ) : maxm2 (n+1+k) ≤ (maxm1m1 n).+1+2+(maxm1m1 k) := begin rewrite [-(maxm1_eq_succ n)], induction n with n n, { induction k with k k, { induction k with k IH, { apply le.tr_refl }, { exact succ_le_succ IH } }, { exact trunc_index.le_trans (maxm2_monotone maxm2_le.lemma₁) (maxm2_le_maxm1 n) } }, { krewrite (add_plus_two_comm -1 (maxm1m1 k)), rewrite [-(maxm1_eq_succ k)], exact trunc_index.le_trans (maxm2_monotone maxm2_le.lemma₂) (maxm2_le_maxm1 k) } end end end int open int trunc eq is_trunc lift unit pointed equiv is_equiv algebra EM namespace spectrum definition ptrunc_maxm2_change_int {k l : ℤ} (X : Type*) (p : k = l) : ptrunc (maxm2 k) X ≃* ptrunc (maxm2 l) X := pequiv_ap (λ n, ptrunc (maxm2 n) X) p definition loop_ptrunc_maxm2_pequiv (k : ℤ) (X : Type*) : Ω (ptrunc (maxm2 (k+1)) X) ≃* ptrunc (maxm2 k) (Ω X) := begin induction k with k k, { exact loop_ptrunc_pequiv k X }, { refine pequiv_of_is_contr _ _ _ !is_trunc_trunc, apply is_contr_loop, cases k with k, { change is_set (trunc 0 X), apply _ }, { change is_set (trunc -2 X), apply _ }} end definition is_trunc_of_is_trunc_maxm2 (k : ℤ) (X : Type) : is_trunc (maxm2 k) X → is_trunc (max0 k) X := λ H, @is_trunc_of_le X _ _ (maxm2_le_maxm0 k) H definition strunc [constructor] (k : ℤ) (E : spectrum) : spectrum := spectrum.MK (λ(n : ℤ), ptrunc (maxm2 (k + n)) (E n)) (λ(n : ℤ), ptrunc_pequiv_ptrunc (maxm2 (k + n)) (equiv_glue E n) ⬝e* (loop_ptrunc_maxm2_pequiv (k + n) (E (n+1)))⁻¹ᵉ* ⬝e* (loop_pequiv_loop (ptrunc_maxm2_change_int _ (add.assoc k n 1)))) definition strunc_change_int [constructor] {k l : ℤ} (E : spectrum) (p : k = l) : strunc k E →ₛ strunc l E := begin induction p, reflexivity end definition is_trunc_maxm2_loop (A : pType) (k : ℤ) : is_trunc (maxm2 (k + 1)) A → is_trunc (maxm2 k) (Ω A) := begin intro H, induction k with k k, { apply is_trunc_loop, exact H }, { apply is_contr_loop, cases k with k, { exact H }, { have H2 : is_contr A, from H, apply _ } } end definition is_strunc [reducible] (k : ℤ) (E : spectrum) : Type := Π (n : ℤ), is_trunc (maxm2 (k + n)) (E n) definition is_strunc_change_int {k l : ℤ} (E : spectrum) (p : k = l) : is_strunc k E → is_strunc l E := begin induction p, exact id end definition is_strunc_strunc (k : ℤ) (E : spectrum) : is_strunc k (strunc k E) := λ n, is_trunc_trunc (maxm2 (k + n)) (E n) definition is_trunc_maxm2_change_int {k l : ℤ} (X : pType) (p : k = l) : is_trunc (maxm2 k) X → is_trunc (maxm2 l) X := by induction p; exact id definition strunc_functor [constructor] (k : ℤ) {E F : spectrum} (f : E →ₛ F) : strunc k E →ₛ strunc k F := smap.mk (λn, ptrunc_functor (maxm2 (k + n)) (f n)) sorry definition is_strunc_EM_spectrum (G : AbGroup) : is_strunc 0 (EM_spectrum G) := begin intro n, induction n with n n, { -- case ≥ 0 apply is_trunc_maxm2_change_int (EM G n) (zero_add n)⁻¹, apply is_trunc_EM }, { change is_contr (EM_spectrum G (-[1+n])), induction n with n IH, { -- case = -1 apply is_contr_loop, exact is_trunc_EM G 0 }, { -- case < -1 apply is_trunc_loop, apply is_trunc_succ, exact IH }} end definition strunc_elim [constructor] {k : ℤ} {E F : spectrum} (f : E →ₛ F) (H : is_strunc k F) : strunc k E →ₛ F := smap.mk (λn, ptrunc.elim (maxm2 (k + n)) (f n)) (λn, sorry) definition trivial_shomotopy_group_of_is_strunc (E : spectrum) {n k : ℤ} (K : is_strunc n E) (H : n < k) : is_contr (πₛ[k] E) := let m := n + (2 - k) in have I : m < 2, from calc m = (2 - k) + n : int.add_comm n (2 - k) ... < (2 - k) + k : add_lt_add_left H (2 - k) ... = 2 : sub_add_cancel 2 k, @trivial_homotopy_group_of_is_trunc (E (2 - k)) (max0 m) 2 (is_trunc_of_is_trunc_maxm2 m (E (2 - k)) (K (2 - k))) (nat.succ_le_succ (max0_le_of_le (le_sub_one_of_lt I))) definition str [constructor] (k : ℤ) (E : spectrum) : E →ₛ strunc k E := smap.mk (λ n, ptr (maxm2 (k + n)) (E n)) (λ n, sorry) structure truncspectrum (n : ℤ) := (carrier : spectrum) (struct : is_strunc n carrier) notation n `-spectrum` := truncspectrum n attribute truncspectrum.carrier [coercion] definition genspectrum_of_truncspectrum (n : ℤ) : n-spectrum → gen_spectrum +ℤ := λ E, truncspectrum.carrier E attribute genspectrum_of_truncspectrum [coercion] section open is_conn definition is_conn_maxm1_of_maxm2 (A : Type*) (n : ℤ) : is_conn (maxm2 n) A → is_conn (maxm1m1 n).+1 A := begin intro H, induction n with n n, { exact H }, { exact is_conn_minus_one A (tr pt) } end definition is_trunc_maxm2_of_maxm1 (A : Type*) (n : ℤ) : is_trunc (maxm1m1 n).+1 A → is_trunc (maxm2 n) A := begin intro H, induction n with n n, { exact H}, { apply is_contr_of_merely_prop, { exact H }, { exact tr pt } } end variables (A : Type*) (n : ℤ) [H : is_conn (maxm2 n) A] include H definition is_trunc_maxm2_ppi (k : ℤ) (P : A → (maxm2 (n+1+k))-Type*) : is_trunc (maxm2 k) (Π*(a : A), P a) := is_trunc_maxm2_of_maxm1 (Π*(a : A), P a) k (@is_trunc_ppi A (maxm1m1 n) (is_conn_maxm1_of_maxm2 A n H) (maxm1m1 k) (λ a, ptrunctype.mk (P a) (is_trunc_of_le (P a) (maxm2_le n k)) pt)) definition is_strunc_spi (k : ℤ) (P : A → (n+1+k)-spectrum) : is_strunc k (spi A P) := begin intro m, unfold spi, exact is_trunc_maxm2_ppi A n (k+m) (λ a, ptrunctype.mk (P a m) (is_trunc_maxm2_change_int (P a m) (add.assoc (n+1) k m) (truncspectrum.struct (P a) m)) pt) end end end spectrum