-- authors: Floris van Doorn, Egbert Rijke import hit.colimit types.fin homotopy.chain_complex types.pointed2 open seq_colim pointed algebra eq is_trunc nat is_equiv equiv sigma sigma.ops chain_complex namespace seq_colim definition pseq_colim [constructor] {X : ℕ → Type*} (f : Πn, X n →* X (n+1)) : Type* := pointed.MK (seq_colim f) (@sι _ _ 0 pt) definition inclusion_pt {X : ℕ → Type*} (f : Πn, X n →* X (n+1)) (n : ℕ) : inclusion f (Point (X n)) = Point (pseq_colim f) := begin induction n with n p, reflexivity, exact (ap (sι f) (respect_pt _))⁻¹ᵖ ⬝ (!glue ⬝ p) end definition pinclusion [constructor] {X : ℕ → Type*} (f : Πn, X n →* X (n+1)) (n : ℕ) : X n →* pseq_colim f := pmap.mk (inclusion f) (inclusion_pt f n) definition seq_diagram [reducible] (A : ℕ → Type) : Type := Π⦃n⦄, A n → A (succ n) definition pseq_diagram [reducible] (A : ℕ → Type*) : Type := Π⦃n⦄, A n →* A (succ n) structure Seq_diagram : Type := (carrier : ℕ → Type) (struct : seq_diagram carrier) definition is_equiseq [reducible] {A : ℕ → Type} (f : seq_diagram A) : Type := forall (n : ℕ), is_equiv (@f n) structure Equi_seq : Type := (carrier : ℕ → Type) (maps : seq_diagram carrier) (prop : is_equiseq maps) protected abbreviation Mk [constructor] := Seq_diagram.mk attribute Seq_diagram.carrier [coercion] attribute Seq_diagram.struct [coercion] variables {A : ℕ → Type} (f : seq_diagram A) include f definition rep0 [reducible] (k : ℕ) : A 0 → A k := begin intro a, induction k with k x, exact a, exact f x end definition is_equiv_rep0 [constructor] [H : is_equiseq f] (k : ℕ) : is_equiv (rep0 f k) := begin induction k with k IH, { apply is_equiv_id}, { apply is_equiv_compose (@f _) (rep0 f k)}, end local attribute is_equiv_rep0 [instance] definition rep0_back [reducible] [H : is_equiseq f] (k : ℕ) : A k → A 0 := (rep0 f k)⁻¹ section generalized_rep variable {n : ℕ} definition rep [reducible] (k : ℕ) (a : A n) : A (n + k) := by induction k with k x; exact a; exact f x definition rep_f (k : ℕ) (a : A n) : pathover A (rep f k (f a)) (succ_add n k) (rep f (succ k) a) := begin induction k with k IH, { constructor}, { apply pathover_ap, exact apo f IH} end definition rep_back [H : is_equiseq f] (k : ℕ) (a : A (n + k)) : A n := begin induction k with k g, exact a, exact g ((@f (n + k))⁻¹ a), end definition is_equiv_rep [constructor] [H : is_equiseq f] (k : ℕ) : is_equiv (λ (a : A n), rep f k a) := begin fapply adjointify, { exact rep_back f k}, { induction k with k IH: intro b, { reflexivity}, unfold rep, unfold rep_back, fold [rep f k (rep_back f k ((@f (n+k))⁻¹ b))], refine ap (@f (n+k)) (IH ((@f (n+k))⁻¹ b)) ⬝ _, apply right_inv (@f (n+k))}, induction k with k IH: intro b, exact rfl, unfold rep_back, unfold rep, fold [rep f k b], refine _ ⬝ IH b, exact ap (rep_back f k) (left_inv (@f (n+k)) (rep f k b)) end definition rep_rep (k l : ℕ) (a : A n) : pathover A (rep f k (rep f l a)) (nat.add_assoc n l k) (rep f (l + k) a) := begin induction k with k IH, { constructor}, { apply pathover_ap, exact apo f IH} end definition f_rep (k : ℕ) (a : A n) : f (rep f k a) = rep f (succ k) a := idp end generalized_rep section shift definition shift_diag [unfold_full] : seq_diagram (λn, A (succ n)) := λn a, f a definition kshift_diag [unfold_full] (k : ℕ) : seq_diagram (λn, A (k + n)) := λn a, f a definition kshift_diag' [unfold_full] (k : ℕ) : seq_diagram (λn, A (n + k)) := λn a, transport A (succ_add n k)⁻¹ (f a) end shift section constructions omit f definition constant_seq (X : Type) : seq_diagram (λ n, X) := λ n x, x definition seq_diagram_arrow_left [unfold_full] (X : Type) : seq_diagram (λn, X → A n) := λn g x, f (g x) -- inductive finset : ℕ → Type := -- | fin : forall n, finset n → finset (succ n) -- | ftop : forall n, finset (succ n) definition seq_diagram_fin : seq_diagram fin := λn, fin.lift_succ definition id0_seq (x y : A 0) : ℕ → Type := λ k, rep0 f k x = rep0 f k y definition id0_seq_diagram (x y : A 0) : seq_diagram (id0_seq f x y) := λ (k : ℕ) (p : rep0 f k x = rep0 f k y), ap (@f k) p definition id_seq (n : ℕ) (x y : A n) : ℕ → Type := λ k, rep f k x = rep f k y definition id_seq_diagram (n : ℕ) (x y : A n) : seq_diagram (id_seq f n x y) := λ (k : ℕ) (p : rep f k x = rep f k y), ap (@f (n + k)) p end constructions section over variable {A} variable (P : Π⦃n⦄, A n → Type) definition seq_diagram_over : Type := Π⦃n⦄ {a : A n}, P a → P (f a) variable (g : seq_diagram_over f P) variables {f P} definition seq_diagram_of_over [unfold_full] {n : ℕ} (a : A n) : seq_diagram (λk, P (rep f k a)) := λk p, g p definition seq_diagram_sigma [unfold 6] : seq_diagram (λn, Σ(x : A n), P x) := λn v, ⟨f v.1, g v.2⟩ variables {n : ℕ} (f P) theorem rep_f_equiv [constructor] (a : A n) (k : ℕ) : P (rep f k (f a)) ≃ P (rep f (succ k) a) := equiv_apd011 P (rep_f f k a) theorem rep_rep_equiv [constructor] (a : A n) (k l : ℕ) : P (rep f (l + k) a) ≃ P (rep f k (rep f l a)) := (equiv_apd011 P (rep_rep f k l a))⁻¹ᵉ end over omit f -- do we need to generalize this to the case where the bottom sequence consists of equivalences? definition seq_diagram_pi {X : Type} {A : X → ℕ → Type} (g : Π⦃x n⦄, A x n → A x (succ n)) : seq_diagram (λn, Πx, A x n) := λn f x, g (f x) namespace ops abbreviation ι [constructor] := @inclusion abbreviation pι [constructor] {A} (f) {n} := @pinclusion A f n abbreviation pι' [constructor] [parsing_only] := @pinclusion abbreviation ι' [constructor] [parsing_only] {A} (f n) := @inclusion A f n end ops open seq_colim.ops definition rep0_glue (k : ℕ) (a : A 0) : ι f (rep0 f k a) = ι f a := begin induction k with k IH, { reflexivity}, { exact glue f (rep0 f k a) ⬝ IH} end definition shift_up [unfold 3] (x : seq_colim f) : seq_colim (shift_diag f) := begin induction x, { exact ι _ (f a)}, { exact glue _ (f a)} end definition shift_down [unfold 3] (x : seq_colim (shift_diag f)) : seq_colim f := begin induction x, { exact ι f a}, { exact glue f a} end definition shift_equiv [constructor] : seq_colim f ≃ seq_colim (shift_diag f) := equiv.MK (shift_up f) (shift_down f) abstract begin intro x, induction x, { esimp, exact glue _ a}, { apply eq_pathover, rewrite [▸*, ap_id, ap_compose (shift_up f) (shift_down f), ↑shift_down, elim_glue], apply square_of_eq, apply whisker_right, exact !elim_glue⁻¹} end end abstract begin intro x, induction x, { exact glue _ a}, { apply eq_pathover, rewrite [▸*, ap_id, ap_compose (shift_down f) (shift_up f), ↑shift_up, elim_glue], apply square_of_eq, apply whisker_right, exact !elim_glue⁻¹} end end definition pshift_equiv [constructor] {A : ℕ → Type*} (f : Πn, A n →* A (succ n)) : pseq_colim f ≃* pseq_colim (λn, f (n+1)) := begin fapply pequiv_of_equiv, { apply shift_equiv }, { exact ap (ι _) !respect_pt } end definition pshift_equiv_pinclusion {A : ℕ → Type*} (f : Πn, A n →* A (succ n)) (n : ℕ) : psquare (pinclusion f n) (pinclusion (λn, f (n+1)) n) (f n) (pshift_equiv f) := phomotopy.mk homotopy.rfl begin refine !idp_con ⬝ _, esimp, induction n with n IH, { esimp[inclusion_pt], esimp[shift_diag], exact !idp_con⁻¹ }, { esimp[inclusion_pt], refine !con_inv_cancel_left ⬝ _, rewrite ap_con, rewrite ap_con, refine _ ⬝ whisker_right _ !con.assoc, refine _ ⬝ (con.assoc (_ ⬝ _) _ _)⁻¹, xrewrite [-IH], esimp[shift_up], rewrite [elim_glue, ap_inv, -ap_compose'], esimp, rewrite [-+con.assoc], apply whisker_right, rewrite con.assoc, apply !eq_inv_con_of_con_eq, symmetry, exact eq_of_square !natural_square } end section functor variable {f} variables {A' : ℕ → Type} {f' : seq_diagram A'} variables (g : Π⦃n⦄, A n → A' n) (p : Π⦃n⦄ (a : A n), g (f a) = f' (g a)) include p definition seq_colim_functor [unfold 7] : seq_colim f → seq_colim f' := begin intro x, induction x with n a n a, { exact ι f' (g a)}, { exact ap (ι f') (p a) ⬝ glue f' (g a)} end theorem seq_colim_functor_glue {n : ℕ} (a : A n) : ap (seq_colim_functor g p) (glue f a) = ap (ι f') (p a) ⬝ glue f' (g a) := !elim_glue omit p definition is_equiv_seq_colim_functor [constructor] [H : Πn, is_equiv (@g n)] : is_equiv (seq_colim_functor @g p) := adjointify _ (seq_colim_functor (λn, (@g _)⁻¹) (λn a, inv_commute' g f f' p a)) abstract begin intro x, induction x, { esimp, exact ap (ι _) (right_inv (@g _) a)}, { apply eq_pathover, rewrite [ap_id, ap_compose (seq_colim_functor g p) (seq_colim_functor _ _), seq_colim_functor_glue _ _ a, ap_con, ▸*, seq_colim_functor_glue _ _ ((@g _)⁻¹ a), -ap_compose, ↑[function.compose], ap_compose (ι _) (@g _),ap_inv_commute',+ap_con, con.assoc, +ap_inv, inv_con_cancel_left, con.assoc, -ap_compose], apply whisker_tl, apply move_left_of_top, esimp, apply transpose, apply square_of_pathover, apply apd} end end abstract begin intro x, induction x, { esimp, exact ap (ι _) (left_inv (@g _) a)}, { apply eq_pathover, rewrite [ap_id, ap_compose (seq_colim_functor _ _) (seq_colim_functor _ _), seq_colim_functor_glue _ _ a, ap_con,▸*, seq_colim_functor_glue _ _ (g a), -ap_compose, ↑[function.compose], ap_compose (ι f) (@g _)⁻¹, inv_commute'_fn, +ap_con, con.assoc, con.assoc, +ap_inv, con_inv_cancel_left, -ap_compose], apply whisker_tl, apply move_left_of_top, esimp, apply transpose, apply square_of_pathover, apply apd} end end definition seq_colim_equiv [constructor] (g : Π{n}, A n ≃ A' n) (p : Π⦃n⦄ (a : A n), g (f a) = f' (g a)) : seq_colim f ≃ seq_colim f' := equiv.mk _ (is_equiv_seq_colim_functor @g p) definition seq_colim_rec_unc [unfold 4] {P : seq_colim f → Type} (v : Σ(Pincl : Π ⦃n : ℕ⦄ (a : A n), P (ι f a)), Π ⦃n : ℕ⦄ (a : A n), Pincl (f a) =[glue f a] Pincl a) : Π(x : seq_colim f), P x := by induction v with Pincl Pglue; exact seq_colim.rec f Pincl Pglue definition pseq_colim_pequiv' [constructor] {A A' : ℕ → Type*} {f : Πn, A n →* A (n+1)} {f' : Πn, A' n →* A' (n+1)} (g : Πn, A n ≃* A' n) (p : Π⦃n⦄, g (n+1) ∘* f n ~ f' n ∘* g n) : pseq_colim @f ≃* pseq_colim @f' := pequiv_of_equiv (seq_colim_equiv g p) (ap (ι _) (respect_pt (g _))) definition pseq_colim_pequiv [constructor] {A A' : ℕ → Type*} {f : Πn, A n →* A (n+1)} {f' : Πn, A' n →* A' (n+1)} (g : Πn, A n ≃* A' n) (p : Πn, g (n+1) ∘* f n ~* f' n ∘* g n) : pseq_colim @f ≃* pseq_colim @f' := pseq_colim_pequiv' g (λn, @p n) definition seq_colim_equiv_constant [constructor] {A : ℕ → Type*} {f f' : Π⦃n⦄, A n → A (n+1)} (p : Π⦃n⦄ (a : A n), f a = f' a) : seq_colim f ≃ seq_colim f' := seq_colim_equiv (λn, erfl) p definition pseq_colim_equiv_constant' [constructor] {A : ℕ → Type*} {f f' : Πn, A n →* A (n+1)} (p : Π⦃n⦄, f n ~ f' n) : pseq_colim @f ≃* pseq_colim @f' := pseq_colim_pequiv' (λn, pequiv.rfl) p definition pseq_colim_equiv_constant [constructor] {A : ℕ → Type*} {f f' : Πn, A n →* A (n+1)} (p : Πn, f n ~* f' n) : pseq_colim @f ≃* pseq_colim @f' := pseq_colim_pequiv (λn, pequiv.rfl) (λn, !pid_pcompose ⬝* p n ⬝* !pcompose_pid⁻¹*) definition pseq_colim_pequiv_pinclusion {A A' : ℕ → Type*} {f : Πn, A n →* A (n+1)} {f' : Πn, A' n →* A' (n+1)} (g : Πn, A n ≃* A' n) (p : Π⦃n⦄, g (n+1) ∘* f n ~* f' n ∘* g n) (n : ℕ) : psquare (pinclusion f n) (pinclusion f' n) (g n) (pseq_colim_pequiv g p) := phomotopy.mk homotopy.rfl begin esimp, refine !idp_con ⬝ _, induction n with n IH, { esimp[inclusion_pt], exact !idp_con⁻¹ }, { esimp[inclusion_pt], rewrite [+ap_con, -+ap_inv, +con.assoc, +seq_colim_functor_glue], xrewrite[-IH], rewrite[-+ap_compose', -+con.assoc], apply whisker_right, esimp, rewrite[(eq_con_inv_of_con_eq (!to_homotopy_pt))], rewrite[ap_con], esimp, rewrite[-+con.assoc, ap_con, -ap_compose', +ap_inv], rewrite[-+con.assoc], refine _ ⬝ whisker_right _ (whisker_right _ (whisker_right _ (whisker_right _ !con.left_inv⁻¹))), rewrite[idp_con, +con.assoc], apply whisker_left, rewrite[ap_con, -ap_compose', con_inv, +con.assoc], apply whisker_left, refine eq_inv_con_of_con_eq _, symmetry, exact eq_of_square !natural_square } end definition seq_colim_equiv_constant_pinclusion {A : ℕ → Type*} {f f' : Πn, A n →* A (n+1)} (p : Πn, f n ~* f' n) (n : ℕ) : pseq_colim_equiv_constant p ∘* pinclusion f n ~* pinclusion f' n := begin sorry end definition is_equiv_seq_colim_rec (P : seq_colim f → Type) : is_equiv (seq_colim_rec_unc : (Σ(Pincl : Π ⦃n : ℕ⦄ (a : A n), P (ι f a)), Π ⦃n : ℕ⦄ (a : A n), Pincl (f a) =[glue f a] Pincl a) → (Π (aa : seq_colim f), P aa)) := begin fapply adjointify, { intro s, exact ⟨λn a, s (ι f a), λn a, apd s (glue f a)⟩}, { intro s, apply eq_of_homotopy, intro x, induction x, { reflexivity}, { apply eq_pathover_dep, esimp, apply hdeg_squareover, apply rec_glue}}, { intro v, induction v with Pincl Pglue, fapply ap (sigma.mk _), apply eq_of_homotopy2, intros n a, apply rec_glue}, end /- universal property -/ definition equiv_seq_colim_rec (P : seq_colim f → Type) : (Σ(Pincl : Π ⦃n : ℕ⦄ (a : A n), P (ι f a)), Π ⦃n : ℕ⦄ (a : A n), Pincl (f a) =[glue f a] Pincl a) ≃ (Π (aa : seq_colim f), P aa) := equiv.mk _ !is_equiv_seq_colim_rec end functor definition pseq_colim.elim [constructor] {A : ℕ → Type*} {B : Type*} {f : Π{n}, A n →* A (n+1)} (g : Πn, A n →* B) (p : Πn, g (n+1) ∘* f ~ g n) : pseq_colim @f →* B := begin fapply pmap.mk, { intro x, induction x with n a n a, { exact g n a }, { exact p n a }}, { esimp, apply respect_pt } end definition prep0 [constructor] {A : ℕ → Type*} (f : pseq_diagram A) (k : ℕ) : A 0 →* A k := pmap.mk (rep0 (λn x, f x) k) begin induction k with k p, reflexivity, exact ap (@f k) p ⬝ !respect_pt end definition respect_pt_prep0_succ {A : ℕ → Type*} (f : pseq_diagram A) (k : ℕ) : respect_pt (prep0 f (succ k)) = ap (@f k) (respect_pt (prep0 f k)) ⬝ respect_pt (@f k) := by reflexivity theorem prep0_succ_lemma {A : ℕ → Type*} (f : pseq_diagram A) (n : ℕ) (p : rep0 (λn x, f x) n pt = rep0 (λn x, f x) n pt) (q : prep0 f n (Point (A 0)) = Point (A n)) : loop_equiv_eq_closed (ap (@f n) q ⬝ respect_pt (@f n)) (ap (@f n) p) = Ω→(@f n) (loop_equiv_eq_closed q p) := by rewrite [▸*, con_inv, ↑ap1_gen, +ap_con, ap_inv, +con.assoc] definition succ_add_tr_rep {n : ℕ} (k : ℕ) (x : A n) : transport A (succ_add n k) (rep f k (f x)) = rep f (succ k) x := begin induction k with k p, reflexivity, exact tr_ap A succ (succ_add n k) _ ⬝ (fn_tr_eq_tr_fn (succ_add n k) f _)⁻¹ ⬝ ap (@f _) p, end definition succ_add_tr_rep_succ {n : ℕ} (k : ℕ) (x : A n) : succ_add_tr_rep f (succ k) x = tr_ap A succ (succ_add n k) _ ⬝ (fn_tr_eq_tr_fn (succ_add n k) f _)⁻¹ ⬝ ap (@f _) (succ_add_tr_rep f k x) := by reflexivity definition code_glue_equiv [constructor] {n : ℕ} (k : ℕ) (x y : A n) : rep f k (f x) = rep f k (f y) ≃ rep f (succ k) x = rep f (succ k) y := begin refine eq_equiv_fn_eq_of_equiv (equiv_ap A (succ_add n k)) _ _ ⬝e _, apply eq_equiv_eq_closed, exact succ_add_tr_rep f k x, exact succ_add_tr_rep f k y end theorem code_glue_equiv_ap {n : ℕ} {k : ℕ} {x y : A n} (p : rep f k (f x) = rep f k (f y)) : code_glue_equiv f (succ k) x y (ap (@f _) p) = ap (@f _) (code_glue_equiv f k x y p) := begin rewrite [▸*, +ap_con, ap_inv, +succ_add_tr_rep_succ, con_inv, inv_con_inv_right, +con.assoc], apply whisker_left, rewrite [- +con.assoc], apply whisker_right, rewrite [- +ap_compose'], note s := (eq_top_of_square (natural_square_tr (λx, fn_tr_eq_tr_fn (succ_add n k) f x ⬝ (tr_ap A succ (succ_add n k) (f x))⁻¹) p))⁻¹ᵖ, rewrite [inv_con_inv_right at s, -con.assoc at s], exact s end section parameters {X : ℕ → Type} (g : seq_diagram X) (x : X 0) definition rep_eq_diag ⦃n : ℕ⦄ (y : X n) : seq_diagram (λk, rep g k (rep0 g n x) = rep g k y) := proof λk, ap (@g (n + k)) qed definition code_incl ⦃n : ℕ⦄ (y : X n) : Type := seq_colim (rep_eq_diag y) definition code [unfold 4] : seq_colim g → Type := seq_colim.elim_type g code_incl begin intro n y, refine _ ⬝e !shift_equiv⁻¹ᵉ, fapply seq_colim_equiv, { intro k, exact code_glue_equiv g k (rep0 g n x) y }, { intro k p, exact code_glue_equiv_ap g p } end definition encode [unfold 5] (y : seq_colim g) (p : ι g x = y) : code y := transport code p (ι' _ 0 idp) definition decode [unfold 4] (y : seq_colim g) (c : code y) : ι g x = y := begin induction y, { esimp at c, exact sorry }, { exact sorry } end definition decode_encode (y : seq_colim g) (p : ι g x = y) : decode y (encode y p) = p := sorry definition encode_decode (y : seq_colim g) (c : code y) : encode y (decode y c) = c := sorry definition seq_colim_eq_equiv_code [constructor] (y : seq_colim g) : (ι g x = y) ≃ code y := equiv.MK (encode y) (decode y) (encode_decode y) (decode_encode y) definition seq_colim_eq {n : ℕ} (y : X n) : (ι g x = ι g y) ≃ seq_colim (rep_eq_diag y) := proof seq_colim_eq_equiv_code (ι g y) qed end definition rep0_eq_diag {X : ℕ → Type} (f : seq_diagram X) (x y : X 0) : seq_diagram (λk, rep0 f k x = rep0 f k y) := proof λk, ap (@f (k)) qed definition seq_colim_eq0 {X : ℕ → Type} (f : seq_diagram X) (x y : X 0) : (ι f x = ι f y) ≃ seq_colim (rep0_eq_diag f x y) := begin refine !seq_colim_eq ⬝e _, fapply seq_colim_equiv, { intro n, exact sorry}, { intro n p, exact sorry } end definition pseq_colim_loop {X : ℕ → Type*} (f : Πn, X n →* X (n+1)) : Ω (pseq_colim f) ≃* pseq_colim (λn, Ω→(f n)) := begin fapply pequiv_of_equiv, { refine !seq_colim_eq0 ⬝e _, fapply seq_colim_equiv, { intro n, exact loop_equiv_eq_closed (respect_pt (prep0 f n)) }, { intro n p, apply prep0_succ_lemma }}, { exact sorry } end definition pseq_colim_loop_pinclusion {X : ℕ → Type*} (f : Πn, X n →* X (n+1)) (n : ℕ) : pseq_colim_loop f ∘* Ω→ (pinclusion f n) ~* pinclusion (λn, Ω→(f n)) n := sorry -- open succ_str -- definition pseq_colim_succ_str_change_index' {N : succ_str} {B : N → Type*} (n : N) (m : ℕ) -- (h : Πn, B n →* B (S n)) : -- pseq_colim (λk, h (n +' (m + succ k))) ≃* pseq_colim (λk, h (S n +' (m + k))) := -- sorry -- definition pseq_colim_succ_str_change_index {N : succ_str} {B : ℕ → N → Type*} (n : N) -- (h : Π(k : ℕ) n, B k n →* B k (S n)) : -- pseq_colim (λk, h k (n +' succ k)) ≃* pseq_colim (λk, h k (S n +' k)) := -- sorry -- definition pseq_colim_index_eq_general {N : succ_str} (B : N → Type*) (f g : ℕ → N) (p : f ~ g) -- (pf : Πn, S (f n) = f (n+1)) (pg : Πn, S (g n) = g (n+1)) (h : Πn, B n →* B (S n)) : -- @pseq_colim (λn, B (f n)) (λn, ptransport B (pf n) ∘* h (f n)) ≃* -- @pseq_colim (λn, B (g n)) (λn, ptransport B (pg n) ∘* h (g n)) := -- sorry end seq_colim