/- submodules and quotient modules -/ -- Authors: Floris van Doorn, Jeremy Avigad import .left_module .quotient_group open algebra eq group sigma sigma.ops is_trunc function trunc equiv is_equiv property definition group_homomorphism_of_add_group_homomorphism [constructor] {G₁ G₂ : AddGroup} (φ : G₁ →a G₂) : G₁ →g G₂ := φ -- move to subgroup -- attribute normal_subgroup_rel._trans_of_to_subgroup_rel [unfold 2] -- attribute normal_subgroup_rel.to_subgroup_rel [constructor] definition is_equiv_incl_of_subgroup {G : Group} (H : property G) [is_subgroup G H] (h : Πg, g ∈ H) : is_equiv (incl_of_subgroup H) := have is_surjective (incl_of_subgroup H), begin intro g, exact image.mk ⟨g, h g⟩ idp end, have is_embedding (incl_of_subgroup H), from is_embedding_incl_of_subgroup H, function.is_equiv_of_is_surjective_of_is_embedding (incl_of_subgroup H) definition subgroup_isomorphism [constructor] {G : Group} (H : property G) [is_subgroup G H] (h : Πg, g ∈ H) : subgroup H ≃g G := isomorphism.mk _ (is_equiv_incl_of_subgroup H h) definition is_equiv_qg_map {G : Group} (H : property G) [is_normal_subgroup G H] (H₂ : Π⦃g⦄, g ∈ H → g = 1) : is_equiv (qg_map H) := set_quotient.is_equiv_class_of _ (λg h r, eq_of_mul_inv_eq_one (H₂ r)) definition quotient_group_isomorphism [constructor] {G : Group} (H : property G) [is_normal_subgroup G H] (h : Πg, g ∈ H → g = 1) : quotient_group H ≃g G := (isomorphism.mk _ (is_equiv_qg_map H h))⁻¹ᵍ definition is_equiv_ab_qg_map {G : AbGroup} (H : property G) [is_subgroup G H] (h : Π⦃g⦄, g ∈ H → g = 1) : is_equiv (ab_qg_map H) := proof @is_equiv_qg_map G H (is_normal_subgroup_ab _) h qed definition ab_quotient_group_isomorphism [constructor] {G : AbGroup} (H : property G) [is_subgroup G H] (h : Πg, H g → g = 1) : quotient_ab_group H ≃g G := (isomorphism.mk _ (is_equiv_ab_qg_map H h))⁻¹ᵍ namespace left_module /- submodules -/ variables {R : Ring} {M M₁ M₂ M₃ : LeftModule R} {m m₁ m₂ : M} structure is_submodule [class] (M : LeftModule R) (S : property M) : Type := (zero_mem : 0 ∈ S) (add_mem : Π⦃g h⦄, g ∈ S → h ∈ S → g + h ∈ S) (smul_mem : Π⦃g⦄ (r : R), g ∈ S → r • g ∈ S) definition zero_mem {R : Ring} {M : LeftModule R} (S : property M) [is_submodule M S] := is_submodule.zero_mem S definition add_mem {R : Ring} {M : LeftModule R} (S : property M) [is_submodule M S] := @is_submodule.add_mem R M S definition smul_mem {R : Ring} {M : LeftModule R} (S : property M) [is_submodule M S] := @is_submodule.smul_mem R M S theorem neg_mem (S : property M) [is_submodule M S] ⦃m⦄ (H : m ∈ S) : -m ∈ S := transport (λx, x ∈ S) (neg_one_smul m) (smul_mem S (- 1) H) theorem is_normal_submodule (S : property M) [is_submodule M S] ⦃m₁ m₂⦄ (H : S m₁) : S (m₂ + m₁ + (-m₂)) := transport (λx, S x) (by rewrite [add.comm, neg_add_cancel_left]) H -- open is_submodule variables {S : property M} [is_submodule M S] definition is_subgroup_of_is_submodule [instance] (S : property M) [is_submodule M S] : is_subgroup (AddGroup_of_AddAbGroup M) S := is_subgroup.mk (zero_mem S) (add_mem S) (neg_mem S) definition is_subgroup_of_is_submodule' [instance] (S : property M) [is_submodule M S] : is_subgroup (Group_of_AbGroup (AddAbGroup_of_LeftModule M)) S := is_subgroup.mk (zero_mem S) (add_mem S) (neg_mem S) definition submodule' (S : property M) [is_submodule M S] : AddAbGroup := ab_subgroup S -- (subgroup_rel_of_submodule_rel S) definition submodule_smul [constructor] (S : property M) [is_submodule M S] (r : R) : submodule' S →a submodule' S := ab_subgroup_functor (smul_homomorphism M r) (λg, smul_mem S r) definition submodule_smul_right_distrib (r s : R) (n : submodule' S) : submodule_smul S (r + s) n = submodule_smul S r n + submodule_smul S s n := begin refine subgroup_functor_homotopy _ _ _ n ⬝ !subgroup_functor_mul⁻¹, intro m, exact to_smul_right_distrib r s m end definition submodule_mul_smul' (r s : R) (n : submodule' S) : submodule_smul S (r * s) n = (submodule_smul S r ∘g submodule_smul S s) n := begin refine subgroup_functor_homotopy _ _ _ n ⬝ (subgroup_functor_compose _ _ _ _ n)⁻¹ᵖ, intro m, exact to_mul_smul r s m end definition submodule_mul_smul (r s : R) (n : submodule' S) : submodule_smul S (r * s) n = submodule_smul S r (submodule_smul S s n) := by rexact submodule_mul_smul' r s n definition submodule_one_smul (n : submodule' S) : submodule_smul S (1 : R) n = n := begin refine subgroup_functor_homotopy _ _ _ n ⬝ !subgroup_functor_gid, intro m, exact to_one_smul m end definition submodule (S : property M) [is_submodule M S] : LeftModule R := LeftModule_of_AddAbGroup (submodule' S) (submodule_smul S) (λr, homomorphism.addstruct (submodule_smul S r)) submodule_smul_right_distrib submodule_mul_smul submodule_one_smul definition submodule_incl [constructor] (S : property M) [is_submodule M S] : submodule S →lm M := lm_homomorphism_of_group_homomorphism (incl_of_subgroup _) begin intro r m, induction m with m hm, reflexivity end definition hom_lift [constructor] {K : property M₂} [is_submodule M₂ K] (φ : M₁ →lm M₂) (h : Π (m : M₁), φ m ∈ K) : M₁ →lm submodule K := lm_homomorphism_of_group_homomorphism (hom_lift (group_homomorphism_of_lm_homomorphism φ) _ h) begin intro r g, exact subtype_eq (to_respect_smul φ r g) end definition submodule_functor [constructor] {S : property M₁} [is_submodule M₁ S] {K : property M₂} [is_submodule M₂ K] (φ : M₁ →lm M₂) (h : Π (m : M₁), m ∈ S → φ m ∈ K) : submodule S →lm submodule K := hom_lift (φ ∘lm submodule_incl S) (by intro m; exact h m.1 m.2) definition hom_lift_compose {K : property M₃} [is_submodule M₃ K] (φ : M₂ →lm M₃) (h : Π (m : M₂), φ m ∈ K) (ψ : M₁ →lm M₂) : hom_lift φ h ∘lm ψ ~ hom_lift (φ ∘lm ψ) proof (λm, h (ψ m)) qed := by reflexivity definition hom_lift_homotopy {K : property M₂} [is_submodule M₂ K] {φ : M₁ →lm M₂} {h : Π (m : M₁), φ m ∈ K} {φ' : M₁ →lm M₂} {h' : Π (m : M₁), φ' m ∈ K} (p : φ ~ φ') : hom_lift φ h ~ hom_lift φ' h' := λg, subtype_eq (p g) definition incl_smul (S : property M) [is_submodule M S] (r : R) (m : M) (h : S m) : r • ⟨m, h⟩ = ⟨_, smul_mem S r h⟩ :> submodule S := by reflexivity definition property_submodule (S₁ S₂ : property M) [is_submodule M S₁] [is_submodule M S₂] : property (submodule S₁) := {m | submodule_incl S₁ m ∈ S₂} definition is_submodule_property_submodule [instance] (S₁ S₂ : property M) [is_submodule M S₁] [is_submodule M S₂] : is_submodule (submodule S₁) (property_submodule S₁ S₂) := is_submodule.mk (mem_property_of (zero_mem S₂)) (λm n p q, mem_property_of (add_mem S₂ (of_mem_property_of p) (of_mem_property_of q))) begin intro m r p, induction m with m hm, apply mem_property_of, apply smul_mem S₂, exact (of_mem_property_of p) end definition eq_zero_of_mem_property_submodule_trivial [constructor] {S₁ S₂ : property M} [is_submodule M S₁] [is_submodule M S₂] (h : Π⦃m⦄, m ∈ S₂ → m = 0) ⦃m : submodule S₁⦄ (Sm : m ∈ property_submodule S₁ S₂) : m = 0 := begin fapply subtype_eq, apply h (of_mem_property_of Sm) end definition is_prop_submodule (S : property M) [is_submodule M S] [H : is_prop M] : is_prop (submodule S) := begin apply @is_trunc_sigma, exact H end local attribute is_prop_submodule [instance] definition is_contr_submodule [instance] (S : property M) [is_submodule M S] [is_contr M] : is_contr (submodule S) := is_contr_of_inhabited_prop 0 definition submodule_isomorphism [constructor] (S : property M) [is_submodule M S] (h : Πg, g ∈ S) : submodule S ≃lm M := isomorphism.mk (submodule_incl S) (is_equiv_incl_of_subgroup S h) /- quotient modules -/ definition quotient_module' (S : property M) [is_submodule M S] : AddAbGroup := quotient_ab_group S -- (subgroup_rel_of_submodule_rel S) definition quotient_module_smul [constructor] (S : property M) [is_submodule M S] (r : R) : quotient_module' S →a quotient_module' S := quotient_ab_group_functor (smul_homomorphism M r) (λg, smul_mem S r) definition quotient_module_smul_right_distrib (r s : R) (n : quotient_module' S) : quotient_module_smul S (r + s) n = quotient_module_smul S r n + quotient_module_smul S s n := begin refine quotient_ab_group_functor_homotopy _ _ _ n ⬝ !quotient_ab_group_functor_mul⁻¹, intro m, exact to_smul_right_distrib r s m end definition quotient_module_mul_smul' (r s : R) (n : quotient_module' S) : quotient_module_smul S (r * s) n = (quotient_module_smul S r ∘g quotient_module_smul S s) n := begin apply eq.symm, apply eq.trans (quotient_ab_group_functor_compose _ _ _ _ n), apply quotient_ab_group_functor_homotopy, intro m, exact eq.symm (to_mul_smul r s m) end -- previous proof: -- refine quotient_ab_group_functor_homotopy _ _ _ n ⬝ -- (quotient_ab_group_functor_compose (quotient_module_smul S r) (quotient_module_smul S s) _ _ n)⁻¹ᵖ, -- intro m, to_mul_smul r s m definition quotient_module_mul_smul (r s : R) (n : quotient_module' S) : quotient_module_smul S (r * s) n = quotient_module_smul S r (quotient_module_smul S s n) := by rexact quotient_module_mul_smul' r s n definition quotient_module_one_smul (n : quotient_module' S) : quotient_module_smul S (1 : R) n = n := begin refine quotient_ab_group_functor_homotopy _ _ _ n ⬝ !quotient_ab_group_functor_gid, intro m, exact to_one_smul m end definition quotient_module (S : property M) [is_submodule M S] : LeftModule R := LeftModule_of_AddAbGroup (quotient_module' S) (quotient_module_smul S) (λr, homomorphism.addstruct (quotient_module_smul S r)) quotient_module_smul_right_distrib quotient_module_mul_smul quotient_module_one_smul definition quotient_map [constructor] (S : property M) [is_submodule M S] : M →lm quotient_module S := lm_homomorphism_of_group_homomorphism (ab_qg_map _) (λr g, idp) definition quotient_map_eq_zero (m : M) (H : S m) : quotient_map S m = 0 := @qg_map_eq_one _ _ (is_normal_subgroup_ab _) _ H definition rel_of_quotient_map_eq_zero (m : M) (H : quotient_map S m = 0) : S m := @rel_of_qg_map_eq_one _ _ (is_normal_subgroup_ab _) m H definition quotient_elim [constructor] (φ : M →lm M₂) (H : Π⦃m⦄, m ∈ S → φ m = 0) : quotient_module S →lm M₂ := lm_homomorphism_of_group_homomorphism (quotient_ab_group_elim (group_homomorphism_of_lm_homomorphism φ) H) begin intro r, esimp, refine @set_quotient.rec_prop _ _ _ (λ x, !is_trunc_eq) _, intro m, exact to_respect_smul φ r m end definition is_prop_quotient_module (S : property M) [is_submodule M S] [H : is_prop M] : is_prop (quotient_module S) := begin apply @set_quotient.is_trunc_set_quotient, exact H end local attribute is_prop_quotient_module [instance] definition is_contr_quotient_module [instance] (S : property M) [is_submodule M S] [is_contr M] : is_contr (quotient_module S) := is_contr_of_inhabited_prop 0 definition quotient_module_isomorphism [constructor] (S : property M) [is_submodule M S] (h : Π⦃m⦄, S m → m = 0) : quotient_module S ≃lm M := (isomorphism.mk (quotient_map S) (is_equiv_ab_qg_map S h))⁻¹ˡᵐ /- specific submodules -/ definition has_scalar_image (φ : M₁ →lm M₂) ⦃m : M₂⦄ (r : R) (h : image φ m) : image φ (r • m) := begin induction h with m' p, apply image.mk (r • m'), refine to_respect_smul φ r m' ⬝ ap (λx, r • x) p, end definition is_submodule_image [instance] (φ : M₁ →lm M₂) : is_submodule M₂ (image φ) := is_submodule.mk (show 0 ∈ image (group_homomorphism_of_lm_homomorphism φ), begin apply is_subgroup.one_mem, apply is_subgroup_image end) (λ g₁ g₂ hg₁ hg₂, show g₁ + g₂ ∈ image (group_homomorphism_of_lm_homomorphism φ), begin apply @is_subgroup.mul_mem, apply is_subgroup_image, exact hg₁, exact hg₂ end) (has_scalar_image φ) /- definition image_rel [constructor] (φ : M₁ →lm M₂) : submodule_rel M₂ := submodule_rel_of_subgroup_rel (image_subgroup (group_homomorphism_of_lm_homomorphism φ)) (has_scalar_image φ) -/ definition image_trivial (φ : M₁ →lm M₂) [H : is_contr M₁] ⦃m : M₂⦄ (h : m ∈ image φ) : m = 0 := begin refine image.rec _ h, intro x p, refine p⁻¹ ⬝ ap φ _ ⬝ to_respect_zero φ, apply @is_prop.elim, apply is_trunc_succ, exact H end definition image_module [constructor] (φ : M₁ →lm M₂) : LeftModule R := submodule (image φ) -- unfortunately this is note definitionally equal: -- definition foo (φ : M₁ →lm M₂) : -- (image_module φ : AddAbGroup) = image (group_homomorphism_of_lm_homomorphism φ) := -- by reflexivity definition image_lift [constructor] (φ : M₁ →lm M₂) : M₁ →lm image_module φ := hom_lift φ (λm, image.mk m idp) definition is_surjective_image_lift (φ : M₁ →lm M₂) : is_surjective (image_lift φ) := begin refine total_image.rec _, intro m, exact image.mk m (subtype_eq idp) end variables {ψ : M₂ →lm M₃} {φ : M₁ →lm M₂} {θ : M₁ →lm M₃} definition image_elim [constructor] (θ : M₁ →lm M₃) (h : Π⦃g⦄, φ g = 0 → θ g = 0) : image_module φ →lm M₃ := begin fapply homomorphism.mk, change Image (group_homomorphism_of_lm_homomorphism φ) → M₃, exact image_elim (group_homomorphism_of_lm_homomorphism θ) h, split, { exact homomorphism.struct (image_elim (group_homomorphism_of_lm_homomorphism θ) _) }, { intro r, refine @total_image.rec _ _ _ _ (λx, !is_trunc_eq) _, intro g, apply to_respect_smul } end definition image_elim_compute (h : Π⦃g⦄, φ g = 0 → θ g = 0) : image_elim θ h ∘lm image_lift φ ~ θ := begin reflexivity end -- definition image_elim_hom_lift (ψ : M →lm M₂) (h : Π⦃g⦄, φ g = 0 → θ g = 0) : -- image_elim θ h ∘lm hom_lift ψ _ ~ _ := -- begin -- reflexivity -- end definition is_contr_image_module [instance] (φ : M₁ →lm M₂) [is_contr M₂] : is_contr (image_module φ) := !is_contr_submodule definition is_contr_image_module_of_is_contr_dom (φ : M₁ →lm M₂) [is_contrM₁ : is_contr M₁] : is_contr (image_module φ) := is_contr.mk 0 begin have Π(x : image_module φ), is_prop (0 = x), from _, apply @total_image.rec, exact this, intro m, have h : is_contr (LeftModule.carrier M₁), from is_contrM₁, induction (eq_of_is_contr 0 m), apply subtype_eq, exact (to_respect_zero φ)⁻¹ end definition image_module_isomorphism [constructor] (φ : M₁ →lm M₂) (H : is_surjective φ) : image_module φ ≃lm M₂ := submodule_isomorphism _ H definition has_scalar_kernel (φ : M₁ →lm M₂) ⦃m : M₁⦄ (r : R) (p : φ m = 0) : φ (r • m) = 0 := begin refine to_respect_smul φ r m ⬝ ap (λx, r • x) p ⬝ smul_zero r, end definition lm_kernel [reducible] (φ : M₁ →lm M₂) : property M₁ := kernel (group_homomorphism_of_lm_homomorphism φ) definition is_submodule_kernel [instance] (φ : M₁ →lm M₂) : is_submodule M₁ (lm_kernel φ) := is_submodule.mk (show 0 ∈ kernel (group_homomorphism_of_lm_homomorphism φ), begin apply is_subgroup.one_mem, apply is_subgroup_kernel end) (λ g₁ g₂ hg₁ hg₂, show g₁ + g₂ ∈ kernel (group_homomorphism_of_lm_homomorphism φ), begin apply @is_subgroup.mul_mem, apply is_subgroup_kernel, exact hg₁, exact hg₂ end) (has_scalar_kernel φ) definition kernel_full (φ : M₁ →lm M₂) [is_contr M₂] (m : M₁) : m ∈ lm_kernel φ := !is_prop.elim definition kernel_module [reducible] (φ : M₁ →lm M₂) : LeftModule R := submodule (lm_kernel φ) definition is_contr_kernel_module [instance] (φ : M₁ →lm M₂) [is_contr M₁] : is_contr (kernel_module φ) := !is_contr_submodule definition kernel_module_isomorphism [constructor] (φ : M₁ →lm M₂) [is_contr M₂] : kernel_module φ ≃lm M₁ := submodule_isomorphism _ (kernel_full φ) definition homology_quotient_property (ψ : M₂ →lm M₃) (φ : M₁ →lm M₂) : property (kernel_module ψ) := property_submodule (lm_kernel ψ) (image (homomorphism_fn φ)) definition is_submodule_homology_property [instance] (ψ : M₂ →lm M₃) (φ : M₁ →lm M₂) : is_submodule (kernel_module ψ) (homology_quotient_property ψ φ) := (is_submodule_property_submodule _ (image φ)) definition homology (ψ : M₂ →lm M₃) (φ : M₁ →lm M₂) : LeftModule R := quotient_module (homology_quotient_property ψ φ) definition homology.mk (φ : M₁ →lm M₂) (m : M₂) (h : ψ m = 0) : homology ψ φ := quotient_map (homology_quotient_property ψ φ) ⟨m, h⟩ definition homology_eq0 {m : M₂} {hm : ψ m = 0} (h : image φ m) : homology.mk φ m hm = 0 := ab_qg_map_eq_one _ h definition homology_eq0' {m : M₂} {hm : ψ m = 0} (h : image φ m): homology.mk φ m hm = homology.mk φ 0 (to_respect_zero ψ) := ab_qg_map_eq_one _ h definition homology_eq {m n : M₂} {hm : ψ m = 0} {hn : ψ n = 0} (h : image φ (m - n)) : homology.mk φ m hm = homology.mk φ n hn := eq_of_sub_eq_zero (homology_eq0 h) definition homology_elim [constructor] (θ : M₂ →lm M) (H : Πm, θ (φ m) = 0) : homology ψ φ →lm M := quotient_elim (θ ∘lm submodule_incl _) begin intro m x, induction m with m h, esimp at *, induction x with v, exact ap θ p⁻¹ ⬝ H v -- m' end definition is_contr_homology [instance] (ψ : M₂ →lm M₃) (φ : M₁ →lm M₂) [is_contr M₂] : is_contr (homology ψ φ) := begin apply @is_contr_quotient_module end definition homology_isomorphism [constructor] (ψ : M₂ →lm M₃) (φ : M₁ →lm M₂) [is_contr M₁] [is_contr M₃] : homology ψ φ ≃lm M₂ := (quotient_module_isomorphism (homology_quotient_property ψ φ) (eq_zero_of_mem_property_submodule_trivial (image_trivial _))) ⬝lm (kernel_module_isomorphism ψ) -- remove: -- definition homology.rec (P : homology ψ φ → Type) -- [H : Πx, is_set (P x)] (h₀ : Π(m : M₂) (h : ψ m = 0), P (homology.mk m h)) -- (h₁ : Π(m : M₂) (h : ψ m = 0) (k : image φ m), h₀ m h =[homology_eq0' k] h₀ 0 (to_respect_zero ψ)) -- : Πx, P x := -- begin -- refine @set_quotient.rec _ _ _ H _ _, -- { intro v, induction v with m h, exact h₀ m h }, -- { intro v v', induction v with m hm, induction v' with n hn, -- intro h, -- note x := h₁ (m - n) _ h, -- esimp, -- exact change_path _ _, -- } -- end -- definition quotient.rec (P : quotient_group N → Type) -- [H : Πx, is_set (P x)] (h₀ : Π(g : G), P (qg_map N g)) -- -- (h₀_mul : Π(g h : G), h₀ (g * h)) -- (h₁ : Π(g : G) (h : N g), h₀ g =[qg_map_eq_one g h] h₀ 1) -- : Πx, P x := -- begin -- refine @set_quotient.rec _ _ _ H _ _, -- { intro g, exact h₀ g }, -- { intro g g' h, -- note x := h₁ (g * g'⁻¹) h, -- } -- -- { intro v, induction }, -- -- { intro v v', induction v with m hm, induction v' with n hn, -- -- intro h, -- -- note x := h₁ (m - n) _ h, -- -- esimp, -- -- exact change_path _ _, -- -- } -- end end left_module