-- Authors: Floris van Doorn -- In collaboration with Stefano, Robin import ..homotopy.smash open bool pointed eq equiv is_equiv sum bool prod unit circle cofiber prod.ops wedge is_trunc function red_susp unit sigma exit namespace smash variables {A B C : Type*} open pushout definition prod3_of_sum3 [unfold 4] (A B C : Type*) : A × C ⊎ A × B ⊎ C × B → A × B × C := begin intro v, induction v with ac v, exact (ac.1, (pt, ac.2)), induction v with ab cb, exact (ab.1, (ab.2, pt)), exact (pt, (cb.2, cb.1)) end definition fin3_of_sum3 [unfold 4] (A B C : Type*) : A × C ⊎ A × B ⊎ C × B → A ⊎ B ⊎ C := sum_functor (λac, ac.1) (sum_functor (λab, ab.2) (λcb, cb.1)) definition smash3 (A B C : Type*) : Type* := pointed.MK (pushout (prod3_of_sum3 A B C) (fin3_of_sum3 A B C)) (inl (pt, (pt, pt))) definition to_image {A B : Type} (f : A → B) (a : A) : sigma (image f) := ⟨f a, image.mk a idp⟩ definition pushout_image_prod3_of_sum3 (A B C : Type*) : Type := pushout (to_image (prod3_of_sum3 A B C)) (fin3_of_sum3 A B C) -- definition pushout_image_prod3_of_sum3_equiv (A B C : Type*) : pushout_image_prod3_of_sum3 A B C ≃ unit := -- begin -- apply equiv_unit_of_is_contr, -- fapply is_contr.mk, -- { exact inr (sum.inl pt) }, -- { intro x, refine @center _ _, -- induction x using pushout.rec_prop, -- { induction x with abc p, -- induction p with v p, induction p, -- induction v with ac v, -- { induction ac with a c, esimp [prod3_of_sum3], }, -- induction v with ab cb, -- { }, -- { }}, -- { }} -- end -- definition pushout_wedge_of_sum_equiv_unit : pushout (@wedge_of_sum A B) bool_of_sum ≃ unit := -- begin -- refine pushout_hcompose_equiv (sum_of_bool A B) (wedge_equiv_pushout_sum A B) -- _ _ ⬝e _, -- exact erfl, -- intro x, induction x: esimp, -- exact bool_of_sum_of_bool, -- apply pushout_of_equiv_right -- end -- definition smash3_comm (A B C : Type*) : smash3 A B C ≃* smash3 C B A := -- begin -- fapply pequiv_of_equiv, -- { fapply pushout.equiv, -- { apply sum_equiv_sum (prod_comm_equiv A C) (sum_comm_equiv (A × B) (C × B)) }, -- { refine prod_assoc_equiv A B C ⬝e prod_comm_equiv (A × B) C -- ⬝e prod_equiv_prod_left (prod_comm_equiv A B) }, -- { refine sum_assoc_equiv A B C ⬝e sum_comm_equiv (A + B) C ⬝e sum_equiv_sum_left (sum_comm_equiv A B) }, -- { intro x, induction x with ac x, reflexivity, induction x with ab cb: reflexivity }, -- { intro x, induction x with ac x, induction ac with a c, esimp, reflexivity, induction x with ab cb: reflexivity }}, -- { reflexivity } -- end /- attempt 1, direct proof that A ∧ (B ∧ C) ≃ smash3 A B C -/ definition glue1 (a : A) (b : B) : inl (a, (b, pt)) = inr (inr (inl b)) :> smash3 A B C := pushout.glue (inr (inl (a, b))) definition glue2 (b : B) (c : C) : inl (pt, (b, c)) = inr (inr (inr c)) :> smash3 A B C := pushout.glue (inr (inr (c, b))) definition glue3 (c : C) (a : A) : inl (a, (pt, c)) = inr (inl a) :> smash3 A B C := pushout.glue (inl (a, c)) definition smash3_of_prod_smash [unfold 5] (a : A) (bc : B ∧ C) : smash3 A B C := begin induction bc using smash.elim' with b c b c, { exact inl (a, (b, c)) }, { refine glue1 a b ⬝ (glue1 pt b)⁻¹ ⬝ (glue2 b pt ⬝ (glue2 pt pt)⁻¹) ⬝ (glue1 pt pt ⬝ (glue1 a pt)⁻¹) }, { refine glue3 c a ⬝ (glue3 pt a)⁻¹ ⬝ (glue1 a pt ⬝ (glue1 pt pt)⁻¹) ⬝ (glue1 pt pt ⬝ (glue1 a pt)⁻¹) }, { exact abstract whisker_right _ (whisker_left _ !con.right_inv ⬝ !con_idp) ⬝ !con.assoc ⬝ whisker_left _ !inv_con_cancel_left ⬝ !con.right_inv end }, { exact abstract whisker_right _ (whisker_right _ !con.right_inv ⬝ !idp_con) ⬝ !con.assoc ⬝ whisker_left _ !inv_con_cancel_left ⬝ !con.right_inv end } end -- definition smash3_of_prod_smash [unfold 5] (a : A) (bc : B ∧ C) : smash3 A B C := -- begin -- induction bc with b c b c, -- { exact inl (a, (b, c)) }, -- { exact pt }, -- { exact pt }, -- { refine glue1 a b ⬝ (glue1 pt b)⁻¹ ⬝ (glue2 b pt ⬝ (glue2 pt pt)⁻¹) }, -- { refine glue3 c a ⬝ (glue3 pt a)⁻¹ ⬝ (glue1 a pt ⬝ (glue1 pt pt)⁻¹) } -- end definition smash3_of_smash_smash_gluer [unfold 4] (bc : B ∧ C) : smash3_of_prod_smash (pt : A) bc = pt := begin induction bc with b c b c, { exact glue2 b c ⬝ (glue2 pt c)⁻¹ ⬝ (glue3 c pt ⬝ (glue3 pt pt)⁻¹) }, { reflexivity }, { reflexivity }, { apply eq_pathover_constant_right, apply square_of_eq, refine !con_idp ⬝ _ ⬝ !elim_gluel⁻¹, refine whisker_right _ !idp_con⁻¹ ⬝ !con.right_inv⁻¹ ◾ idp ◾ (!con.right_inv ⬝ !con.right_inv⁻¹) }, { apply eq_pathover_constant_right, apply square_of_eq, refine !con_idp ⬝ _ ⬝ !elim_gluer⁻¹, refine whisker_right _ !con.right_inv ⬝ !idp_con ⬝ !con_idp⁻¹ ⬝ whisker_left _ !con.right_inv⁻¹ ⬝ !con_idp⁻¹ ⬝ whisker_left _ !con.right_inv⁻¹ } end definition smash3_of_smash_smash [unfold 4] (x : A ∧ (B ∧ C)) : smash3 A B C := begin induction x using smash.elim' with a bc a bc, { exact smash3_of_prod_smash a bc }, { exact glue1 a pt ⬝ (glue1 pt pt)⁻¹ }, { exact smash3_of_smash_smash_gluer bc }, { apply con.right_inv }, { exact !con.right_inv ◾ !con.right_inv } end definition smash_smash_of_smash3 [unfold 4] (x : smash3 A B C) : A ∧ (B ∧ C) := begin induction x, { exact smash.mk a.1 (smash.mk a.2.1 a.2.2) }, { exact pt }, { exact abstract begin induction x with ac x, { induction ac with a c, exact ap (smash.mk a) (gluer' c pt) ⬝ gluel' a pt }, induction x with ab cb, { induction ab with a b, exact ap (smash.mk a) (gluel' b pt) ⬝ gluel' a pt }, { induction cb with c b, exact gluer' (smash.mk b c) pt } end end }, end definition smash3_of_smash_smash_of_smash3_inl [unfold 4] (x : A × B × C) : smash3_of_smash_smash (smash_smash_of_smash3 (inl x)) = inl x := begin induction x with a x, induction x with b c, reflexivity end definition smash3_of_smash_smash_of_smash3_inr [unfold 4] (x : A ⊎ B ⊎ C) : smash3_of_smash_smash (smash_smash_of_smash3 (inr x)) = inr x := begin induction x with a x, { exact (glue1 pt pt ⬝ (glue1 a pt)⁻¹) ⬝ glue3 pt a}, induction x with b c, { exact (glue2 pt pt ⬝ (glue2 b pt)⁻¹) ⬝ glue1 pt b}, { exact (glue3 pt pt ⬝ (glue3 c pt)⁻¹) ⬝ glue2 pt c} end attribute smash_smash_of_smash3_1 [unfold 4] definition smash_smash_of_smash3_of_prod_smash [unfold 5] (a : A) (bc : B ∧ C) : smash_smash_of_smash3 (smash3_of_prod_smash a bc) = smash.mk a bc := begin induction bc with b c b c, { reflexivity }, { exact ap (smash.mk a) (gluel pt) }, { exact ap (smash.mk a) (gluer pt) }, { apply eq_pathover, refine ap_compose smash_smash_of_smash3 _ _ ⬝ ap02 _ !elim_gluel ⬝ph _, refine !ap_con ⬝ (!ap_con ⬝ (!ap_con ⬝ !pushout.elim_glue ◾ (!ap_inv ⬝ _⁻²)) ◾ (!ap_con ⬝ !pushout.elim_glue ◾ (!ap_inv ⬝ _⁻²))) ◾ (!ap_con ⬝ !pushout.elim_glue ◾ (!ap_inv ⬝ _⁻²)) ⬝ph _, rotate 3, do 3 exact !pushout.elim_glue, esimp, exact sorry }, { apply eq_pathover, refine ap_compose smash_smash_of_smash3 _ _ ⬝ ap02 _ !elim_gluer ⬝ph _, refine !ap_con ⬝ (!ap_con ⬝ (!ap_con ⬝ !pushout.elim_glue ◾ (!ap_inv ⬝ _⁻²)) ◾ (!ap_con ⬝ !pushout.elim_glue ◾ (!ap_inv ⬝ _⁻²))) ◾ (!ap_con ⬝ !pushout.elim_glue ◾ (!ap_inv ⬝ _⁻²)) ⬝ph _, rotate 3, do 3 exact !pushout.elim_glue, exact sorry } end -- the commented out is a slow but correct proof definition smash_smash_equiv_smash3 (A B C : Type*) : A ∧ (B ∧ C) ≃* smash3 A B C := begin fapply pequiv_of_equiv, { fapply equiv.MK, { exact smash3_of_smash_smash }, { exact smash_smash_of_smash3 }, { intro x, --induction x, -- { exact smash3_of_smash_smash_of_smash3_inl x }, -- { exact smash3_of_smash_smash_of_smash3_inr x }, -- { apply eq_pathover_id_right, -- refine ap_compose smash3_of_smash_smash _ _ ⬝ ap02 _ !pushout.elim_glue ⬝ph _, -- induction x with ac x, -- { induction ac with a c, -- refine !ap_con ⬝ !ap_compose'⁻¹ ◾ proof !elim'_gluel'_pt qed ⬝ph _, -- xrewrite [{ap (smash3_of_smash_smash ∘ smash.mk a)}(idpath (ap (smash3_of_prod_smash a)))], -- esimp, refine !elim'_gluer'_pt ◾ idp ⬝ph _, -- refine _ ⬝vp whisker_right _ !inv_con_inv_right, apply whisker_lb, -- refine whisker_left _ !inv_con_inv_right⁻¹ ⬝ !con_inv_cancel_right ⬝ph _, -- apply whisker_bl, exact hrfl }, -- induction x with ab bc, -- { induction ab with a b, -- refine !ap_con ⬝ !ap_compose'⁻¹ ◾ proof !elim'_gluel'_pt qed ⬝ph _, esimp, -- refine !elim'_gluel'_pt ◾ idp ⬝ph _, -- refine whisker_left _ !inv_con_inv_right⁻¹ ⬝ !con.assoc ⬝ whisker_left _ !con.right_inv ⬝ !con_idp ⬝ph _, -- refine _ ⬝vp whisker_right _ !inv_con_inv_right, apply whisker_lb, apply whisker_bl, exact hrfl -- }, -- { induction bc with b c, refine !elim'_gluer'_pt ⬝ph _, esimp, -- refine whisker_left _ !inv_con_inv_right⁻¹ ⬝ph _, apply whisker_bl, apply whisker_bl, exact hrfl }} exact sorry }, { intro x, induction x with a bc a bc, { exact smash_smash_of_smash3_of_prod_smash a bc }, { apply gluel }, { apply gluer }, { apply eq_pathover_id_right, refine ap_compose smash_smash_of_smash3 _ _ ⬝ ap02 _ !elim_gluel ⬝ph _, refine !ap_con ⬝ (!pushout.elim_glue ◾ (!ap_inv ⬝ !pushout.elim_glue⁻²)) ⬝ph _, apply sorry, }, { apply eq_pathover_id_right, refine ap_compose smash_smash_of_smash3 _ _ ⬝ ap02 _ !elim_gluer ⬝ph _, induction bc with b c b c, { refine !ap_con ⬝ (!ap_con ⬝ !pushout.elim_glue ◾ (!ap_inv ⬝ _⁻²)) ◾ (!ap_con ⬝ !pushout.elim_glue ◾ (!ap_inv ⬝ _⁻²)) ⬝ph _, rotate 2, do 2 apply !pushout.elim_glue, exact sorry }, { exact sorry }, { exact sorry }, { exact sorry }, { exact sorry }}}}, { reflexivity } end -- definition smash_assoc (A B C : Type*) : A ∧ (B ∧ C) ≃* (A ∧ B) ∧ C := -- calc -- A ∧ (B ∧ C) ≃* smash3 A B C : smash_smash_equiv_smash3 -- ... ≃* smash3 C B A : smash3_comm -- ... ≃* C ∧ (B ∧ A) : smash_smash_equiv_smash3 -- ... ≃* (B ∧ A) ∧ C : smash_comm C (B ∧ A) -- ... ≃* (A ∧ B) ∧ C : smash_pequiv_smash_left C (smash_comm B A) -- end end smash /- attempt 2: proving the induction principle of smash3 A B C for A ∧ (B ∧ C) -/ namespace smash variables {A B C : Type*} /- an induction principle which has only 1 point constructor, but which has bad computation properties -/ protected definition rec' {P : smash A B → Type} (Pmk : Πa b, P (smash.mk a b)) (Pgl : Πa, Pmk a pt =[gluel' a pt] Pmk pt pt) (Pgr : Πb, Pmk pt b =[gluer' b pt] Pmk pt pt) (x : smash' A B) : P x := begin induction x using smash.rec, { apply Pmk }, { exact gluel pt ▸ Pmk pt pt }, { exact gluer pt ▸ Pmk pt pt }, { refine change_path _ (Pgl a ⬝o !pathover_tr), apply inv_con_cancel_right }, { refine change_path _ (Pgr b ⬝o !pathover_tr), apply inv_con_cancel_right } end -- protected definition rec'_gluel' {P : smash A B → Type} (Pmk : Πa b, P (smash.mk a b)) -- (Pgl : Πa, Pmk a pt =[gluel' a pt] Pmk pt pt) -- (Pgr : Πb, Pmk pt b =[gluer' b pt] Pmk pt pt) (a : A) : apd (smash.rec' Pmk Pgl Pgr) (gluel' a pt) = Pgl a := -- begin -- refine !apd_con ⬝ _, -- refine ap011 concato !rec_gluel (!apd_inv ⬝ ap inverseo !rec_gluel ⬝ !change_path_invo⁻¹) ⬝ _, -- refine !change_path_cono⁻¹ ⬝ _, -- -- refine cono_invo -- -- refine change_path_invo -- end -- protected definition rec'_gluer' {P : smash A B → Type} (Pmk : Πa b, P (smash.mk a b)) -- (Pgl : Πa, Pmk a pt =[gluel' a pt] Pmk pt pt) -- (Pgr : Πb, Pmk pt b =[gluer' b pt] Pmk pt pt) (b : B) : apd (smash.rec' Pmk Pgl Pgr) (gluer' b pt) = Pgr b := -- sorry definition inl3 (a : A) (b : B) (c : C) : A ∧ (B ∧ C) := smash.mk a (smash.mk b c) definition aux1 (a : A) : A ∧ (B ∧ C) := pt definition aux2 (b : B) : A ∧ (B ∧ C) := pt definition aux3 (c : C) : A ∧ (B ∧ C) := pt definition glue12 (a : A) (b : B) : inl3 a b (pt : C) = aux1 a := ap (smash.mk a) (gluel' b pt) ⬝ gluel' a pt definition glue23 (b : B) (c : C) : inl3 (pt : A) b c = aux2 b := gluer' (smash.mk b c) pt definition glue31 (c : C) (a : A) : inl3 a (pt : B) c = aux3 c := ap (smash.mk a) (gluer' c pt) ⬝ gluel' a pt definition glue1_eq (a : A) : glue12 a pt = glue31 pt a :> (_ = _ :> (A ∧ (B ∧ C))) := whisker_right _ (ap02 _ (!con.right_inv ⬝ !con.right_inv⁻¹)) definition glue2_eq (b : B) : glue23 b pt = glue12 pt b :> (_ = _ :> (A ∧ (B ∧ C))) := !con_idp⁻¹ ⬝ !ap_mk_right⁻¹ ◾ !con.right_inv⁻¹ definition glue3_eq (c : C) : glue31 c pt = glue23 pt c :> (_ = _ :> (A ∧ (B ∧ C))) := !ap_mk_right ◾ !con.right_inv ⬝ !con_idp local attribute ap_mk_right [reducible] definition concat3 {A : Type} {x y z : A} {p p' : x = y} {q q' : y = z} {r r' : p = p'} {s s' : q = q'} : r = r' → s = s' → r ◾ s = r' ◾ s' := ap011 concat2 definition glue_eq2 : glue3_eq (pt : A) ⬝ glue2_eq (pt : B) ⬝ glue1_eq (pt : C) = idp := begin unfold [glue1_eq, glue2_eq, glue3_eq], refine proof ap011 concat2 proof (ap_is_constant_idp _ _ !con.right_inv) qed idp qed ◾ (!idp_con ⬝ proof ap011 concat2 proof (ap_is_constant_idp _ _ !con.right_inv) qed⁻² idp qed) ◾ idp ⬝ _, refine whisker_right _ _ ⬝ _, exact ((ap02 (smash.mk (Point C)) (con.right_inv (gluer (Point A))) ⬝ (con.right_inv (gluer (smash.mk (Point B) (Point A))))⁻¹) ⬝ (ap02 (smash.mk (Point C)) (con.right_inv (gluel (Point B))) ⬝ (con.right_inv (gluer (smash.mk (Point B) (Point A))))⁻¹)⁻¹) ◾ idp, { refine _ ⬝ concat3 idp (con.right_inv (con.right_inv (gluel (Point C)))), refine proof idp qed ⬝ !con2_con_con2 }, refine !con2_con_con2 ⬝ _, refine ap (whisker_right _) _ ⬝ whisker_right_idp_left _ _, refine idp ◾ !inv_con_inv_right ◾ idp ⬝ _, refine whisker_right _ (!con.assoc ⬝ whisker_left _ (!inv_con_cancel_left ⬝ !ap_inv⁻¹)) ⬝ _, refine whisker_right _ !ap_con⁻¹ ⬝ !ap_con⁻¹ ⬝ _, refine ap_is_constant (@is_constant.eq _ _ _ (@is_constant_ap _ _ _ _ _ _)) _ ⬝ !con.right_inv, constructor, exact gluer end definition glue12_cancel (a : A) (b : B) : @glue12 A B C a b ⬝ (glue12 a pt)⁻¹ ⬝ ap (smash.mk a) (gluel pt) = ap (smash.mk a) (gluel b) := begin unfold [glue12], refine whisker_right _ (whisker_left _ !con_inv ⬝ whisker_left _ (whisker_left _ (ap02 _ !con.right_inv)⁻² ⬝ !con_idp) ⬝ !con_inv_cancel_right) ⬝ _, refine !ap_con⁻¹ ⬝ ap02 _ !inv_con_cancel_right, end definition glue12_cancel_pt_pt : @glue12_cancel A B C pt pt = whisker_right _ !con.right_inv ⬝ !idp_con := sorry definition glue12_over {P : A ∧ (B ∧ C) → Type} (Ppt : Πa b c, P (inl3 a b c)) (P1 : Πa, P (aux1 a)) (P12 : Πa b, Ppt a b pt =[glue12 a b] P1 a) (a : A) (b : B) : pathover P (Ppt a b pt) (ap (smash.mk a) (gluel b)) (transport P (ap (smash.mk a) (gluel pt)) (Ppt a pt pt)) := begin exact change_path (glue12_cancel a b) (P12 a b ⬝o (P12 a pt)⁻¹ᵒ ⬝o pathover_tr (ap (smash.mk a) (gluel pt)) (Ppt a pt pt)) end definition glue12_over_pt_pt {P : A ∧ (B ∧ C) → Type} (Ppt : Πa b c, P (inl3 a b c)) (P1 : Πa, P (aux1 a)) (P12 : Πa b, Ppt a b pt =[glue12 a b] P1 a) : glue12_over Ppt P1 P12 pt pt = pathover_tr (ap (smash.mk pt) (gluel pt)) (Ppt pt pt pt) := sorry definition smash3_rec_mk [unfold 13] {P : A ∧ (B ∧ C) → Type} (Ppt : Πa b c, P (inl3 a b c)) (P1 : Πa, P (aux1 a)) (P2 : Πb, P (aux2 b)) (P3 : Πc, P (aux3 c)) (P12 : Πa b, Ppt a b pt =[glue12 a b] P1 a) (P23 : Πb c, Ppt pt b c =[glue23 b c] P2 b) (P31 : Πc a, Ppt a pt c =[glue31 c a] P3 c) (a : A) (bc : B ∧ C) : P (smash.mk a bc) := begin induction bc with b c b c, { exact Ppt a b c }, { refine transport P _ (Ppt a pt pt), exact ap (smash.mk a) (gluel pt) }, --refine transport P _ (Ppt pt pt pt), { refine transport P _ (Ppt a pt pt), exact ap (smash.mk a) (gluer pt) }, { exact pathover_of_pathover_ap P (smash.mk a) (glue12_over Ppt P1 P12 a b) }, { exact sorry } end definition apd_constant' {A : Type} {B : Type} {a a' : A} (p : a = a') {b : B} : apd (λa, b) p = pathover_of_eq p idp := by induction p; reflexivity definition change_path_eq_of_eq_change_path' {A : Type} {B : A → Type} {a a₂ : A} {p p' : a = a₂} {b : B a} {b₂ : B a₂} {r : p = p'} {q : b =[p] b₂} {q' : b =[p'] b₂} : change_path r q = q' → q = change_path r⁻¹ q' := begin induction r, intro s, exact s end definition change_path_eq_of_eq_change_path {A : Type} {B : A → Type} {a a₂ : A} {p p' : a = a₂} {b : B a} {b₂ : B a₂} {r : p = p'} {q : b =[p] b₂} {q' : b =[p'] b₂} : change_path r⁻¹ q' = q → q' = change_path r q := begin induction r, intro s, exact s end definition pathover_hconcato' {A : Type} {B : A → Type} {a₀₀ a₂₀ a₀₂ a₂₂ : A} /-a₀₀-/ {p₁₀ : a₀₀ = a₂₀} /-a₂₀-/ {p₀₁ : a₀₀ = a₀₂} /-s₁₁-/ {p₂₁ : a₂₀ = a₂₂} /-a₀₂-/ {p₁₂ : a₀₂ = a₂₂} /-a₂₂-/ {s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁} {b₀₀ : B a₀₀} {b₂₀ : B a₂₀} {b₀₂ : B a₀₂} {b₂₂ : B a₂₂} /-b₀₀-/ {q₁₀ : b₀₀ =[p₁₀] b₂₀} /-b₂₀-/ {q₀₁ : b₀₀ =[p₀₁] b₀₂} /-t₁₁-/ {q₂₁ : b₂₀ =[p₂₁] b₂₂} /-b₀₂-/ {q₁₂ : b₀₂ =[p₁₂] b₂₂} /-b₂₂-/ {p : a₀₀ = a₀₂} {sp : p = p₀₁} {q : b₀₀ =[p] b₀₂} (r : change_path sp q = q₀₁) (t₁₁ : squareover B (sp ⬝ph s₁₁) q₁₀ q₁₂ q q₂₁) : squareover B s₁₁ q₁₀ q₁₂ q₀₁ q₂₁ := by induction sp; induction r; exact t₁₁ definition pathover_hconcato_right_inv {A : Type} {B : A → Type} {a₀₀ a₂₀ a₀₂ a₀₄ a₂₂ : A} /-a₀₀-/ {p₁₀ : a₀₀ = a₂₀} /-a₂₀-/ {p₀₁ : a₀₀ = a₀₂} {p₀₃ : a₀₂ = a₀₄} /-s₁₁-/ {p₂₁ : a₂₀ = a₂₂} /-a₀₂-/ {p₁₂ : a₀₂ = a₂₂} /-a₂₂-/ {s₁₁ : square p₁₀ p₁₂ (p₀₁ ⬝ p₀₃ ⬝ p₀₃⁻¹) p₂₁} {b₀₀ : B a₀₀} {b₂₀ : B a₂₀} {b₀₂ : B a₀₂} {b₂₂ : B a₂₂} {b₀₄ : B a₀₄} /-b₀₀-/ {q₁₀ : b₀₀ =[p₁₀] b₂₀} /-b₂₀-/ {q₀₁ : b₀₀ =[p₀₁] b₀₂} {q₀₃ : b₀₂ =[p₀₃] b₀₄} /-t₁₁-/ {q₂₁ : b₂₀ =[p₂₁] b₂₂} /-b₀₂-/ {q₁₂ : b₀₂ =[p₁₂] b₂₂} /-b₂₂-/ --{p : a₀₀ = a₀₂} {sp : p = p₀₁} {q : b₀₀ =[p] b₀₂} (t₁₁ : squareover B (!con_inv_cancel_right⁻¹ ⬝ph s₁₁) q₁₀ q₁₂ q₀₁ q₂₁) : squareover B s₁₁ q₁₀ q₁₂ (q₀₁ ⬝o q₀₃ ⬝o q₀₃⁻¹ᵒ) q₂₁ := begin exact sorry end definition smash3_rec_23 {P : A ∧ (B ∧ C) → Type} (Ppt : Πa b c, P (inl3 a b c)) (P1 : Πa, P (aux1 a)) (P2 : Πb, P (aux2 b)) (P3 : Πc, P (aux3 c)) (P12 : Πa b, Ppt a b pt =[glue12 a b] P1 a) (P23 : Πb c, Ppt pt b c =[glue23 b c] P2 b) (P31 : Πc a, Ppt a pt c =[glue31 c a] P3 c) (b : B) (c : C) : pathover P (Ppt pt b c) (gluer' (smash.mk b c) (smash.mk' pt pt)) (Ppt pt pt pt) := begin refine change_path _ (P23 b c ⬝o ((P23 b pt)⁻¹ᵒ ⬝o P12 pt b) ⬝o (P12 pt pt)⁻¹ᵒ), refine whisker_left _ (whisker_right _ !glue2_eq⁻² ⬝ !con.left_inv) ◾ (ap02 _ !con.right_inv ◾ !con.right_inv)⁻² ⬝ _, reflexivity end definition smash3_rec {P : A ∧ (B ∧ C) → Type} (Ppt : Πa b c, P (inl3 a b c)) (P1 : Πa, P (aux1 a)) (P2 : Πb, P (aux2 b)) (P3 : Πc, P (aux3 c)) (P12 : Πa b, Ppt a b pt =[glue12 a b] P1 a) (P23 : Πb c, Ppt pt b c =[glue23 b c] P2 b) (P31 : Πc a, Ppt a pt c =[glue31 c a] P3 c) (x : A ∧ (B ∧ C)) : P x := begin induction x using smash.rec' with a bc a bc, { exact smash3_rec_mk Ppt P1 P2 P3 P12 P23 P31 a bc }, { refine change_path _ (P31 pt a ⬝o (P31 pt pt)⁻¹ᵒ), refine (whisker_right _ (ap02 _ !con.right_inv)) ◾ (ap02 _ !con.right_inv ◾ !con.right_inv)⁻² ⬝ _, apply idp_con }, { induction bc using smash.rec' with b c b c, { exact smash3_rec_23 Ppt P1 P2 P3 P12 P23 P31 b c }, { apply pathover_pathover, refine ap (pathover_ap _ _) (!apd_con ⬝ ap011 concato !rec_gluel (!apd_inv ⬝ ap inverseo !rec_gluel ⬝ !pathover_of_pathover_ap_invo⁻¹) ⬝ !pathover_of_pathover_ap_cono⁻¹) ⬝pho _, refine _ ⬝hop (ap (pathover_ap _ _) !apd_constant')⁻¹, refine to_right_inv (pathover_compose P (smash.mk pt) _ _ _) _ ⬝pho _, apply squareover_change_path_left, refine !change_path_cono⁻¹ ⬝pho _, apply squareover_change_path_left, refine ap (λx, _ ⬝o x⁻¹ᵒ) !glue12_over_pt_pt ⬝pho _, apply pathover_hconcato_right_inv, exact sorry }, { exact sorry }} end /- 3rd attempt, proving an induction principle without the aux-points induction principle for the smash -/ -- definition smash3_rec_mk [unfold 10] {P : A ∧ (B ∧ C) → Type} (Ppt : Πa b c, P (smash.mk a (smash.mk b c))) -- (P12 : Πa b, Ppt a b pt =[glue12 a b] Ppt pt pt pt) -- (P23 : Πb c, Ppt pt b c =[glue23 b c] Ppt pt pt pt) -- (P31 : Πc a, Ppt a pt c =[glue31 c a] Ppt pt pt pt) -- (a : A) (bc : B ∧ C) : P (smash.mk a bc) := -- begin -- induction bc with b c b c, -- { exact Ppt a b c }, -- { refine transport P _ (Ppt a pt pt), exact ap (smash.mk a) (gluel pt) }, --refine transport P _ (Ppt pt pt pt), -- { refine transport P _ (Ppt a pt pt), exact ap (smash.mk a) (gluer pt) }, -- { }, -- { exact sorry } -- end -- definition smash3_rec {P : A ∧ (B ∧ C) → Type} (Ppt : Πa b c, P (smash.mk a (smash.mk b c))) -- (P12 : Πa b, Ppt a b pt =[glue12 a b] Ppt pt pt pt) -- (P23 : Πb c, Ppt pt b c =[glue23 b c] Ppt pt pt pt) -- (P31 : Πc a, Ppt a pt c =[glue31 c a] Ppt pt pt pt) -- (x : A ∧ (B ∧ C)) : P x := -- begin -- induction x using smash.rec' with a bc a bc, -- { exact smash3_rec_mk Ppt P12 P23 P31 a bc }, -- { esimp, exact sorry }, -- { induction bc using smash.rec' with b c b c, -- { refine P23 b c }, -- { apply pathover_pathover, -- refine ap (pathover_ap _ _) (!apd_con ⬝ ap011 concato !rec_gluel (!apd_inv ⬝ ap inverseo !rec_gluel)) ⬝pho _, -- refine _ ⬝hop (ap (pathover_ap _ _) !apd_constant')⁻¹, -- check_expr (natural_square (λ a, gluer' a pt) (gluel' b pt)), -- }, -- --!rec_gluel (!apd_inv ⬝ ap inverseo !rec_gluel) -- { }} -- end end smash