-- definitions, theorems and attributes which should be moved to files in the HoTT library import homotopy.sphere2 homotopy.cofiber homotopy.wedge hit.prop_trunc hit.set_quotient open eq nat int susp pointed pmap sigma is_equiv equiv fiber algebra trunc trunc_index pi group is_trunc function sphere unit sum prod bool attribute is_prop.elim_set [unfold 6] definition add_comm_right {A : Type} [add_comm_semigroup A] (n m k : A) : n + m + k = n + k + m := !add.assoc ⬝ ap (add n) !add.comm ⬝ !add.assoc⁻¹ -- move to chain_complex (or another file). rename chain_complex.is_exact structure is_exact_t {A B : Type} {C : Type*} (f : A → B) (g : B → C) := ( im_in_ker : Π(a:A), g (f a) = pt) ( ker_in_im : Π(b:B), (g b = pt) → fiber f b) structure is_exact {A B : Type} {C : Type*} (f : A → B) (g : B → C) := ( im_in_ker : Π(a:A), g (f a) = pt) ( ker_in_im : Π(b:B), (g b = pt) → image f b) definition is_exact_g {A B C : Group} (f : A →g B) (g : B →g C) := is_exact f g definition is_exact_ag {A B C : AbGroup} (f : A →g B) (g : B →g C) := is_exact f g definition is_exact_g.mk {A B C : Group} {f : A →g B} {g : B →g C} (H₁ : Πa, g (f a) = 1) (H₂ : Πb, g b = 1 → image f b) : is_exact_g f g := is_exact.mk H₁ H₂ definition is_exact.im_in_ker2 {A B : Type} {C : Set*} {f : A → B} {g : B → C} (H : is_exact f g) {b : B} (h : image f b) : g b = pt := begin induction h with a p, exact ap g p⁻¹ ⬝ is_exact.im_in_ker H a end -- TO DO: give less univalency proof definition is_exact_homotopy {A B : Type} {C : Type*} {f f' : A → B} {g g' : B → C} (p : f ~ f') (q : g ~ g') (H : is_exact f g) : is_exact f' g' := begin induction p using homotopy.rec_on_idp, induction q using homotopy.rec_on_idp, exact H end definition is_exact_trunc_functor {A B : Type} {C : Type*} {f : A → B} {g : B → C} (H : is_exact_t f g) : @is_exact _ _ (ptrunc 0 C) (trunc_functor 0 f) (trunc_functor 0 g) := begin constructor, { intro a, esimp, induction a with a, exact ap tr (is_exact_t.im_in_ker H a) }, { intro b p, induction b with b, note q := !tr_eq_tr_equiv p, induction q with q, induction is_exact_t.ker_in_im H b q with a r, exact image.mk (tr a) (ap tr r) } end definition is_contr_middle_of_is_exact {A B : Type} {C : Type*} {f : A → B} {g : B → C} (H : is_exact f g) [is_contr A] [is_set B] [is_contr C] : is_contr B := begin apply is_contr.mk (f pt), intro b, induction is_exact.ker_in_im H b !is_prop.elim, exact ap f !is_prop.elim ⬝ p end definition is_surjective_of_is_exact_of_is_contr {A B : Type} {C : Type*} {f : A → B} {g : B → C} (H : is_exact f g) [is_contr C] : is_surjective f := λb, is_exact.ker_in_im H b !is_prop.elim section chain_complex open succ_str chain_complex definition is_exact_of_is_exact_at {N : succ_str} {A : chain_complex N} {n : N} (H : is_exact_at A n) : is_exact (cc_to_fn A (S n)) (cc_to_fn A n) := is_exact.mk (cc_is_chain_complex A n) H end chain_complex namespace algebra definition ab_group_unit [constructor] : ab_group unit := ⦃ab_group, trivial_group, mul_comm := λx y, idp⦄ definition inf_group_loopn (n : ℕ) (A : Type*) [H : is_succ n] : inf_group (Ω[n] A) := by induction H; exact _ definition one_unique {A : Type} [group A] {a : A} (H : Πb, a * b = b) : a = 1 := !mul_one⁻¹ ⬝ H 1 definition pSet_of_AddGroup [constructor] [reducible] [coercion] (G : AddGroup) : Set* := pSet_of_Group G attribute algebra._trans_of_pSet_of_AddGroup [unfold 1] attribute algebra._trans_of_pSet_of_AddGroup_1 algebra._trans_of_pSet_of_AddGroup_2 [constructor] definition pType_of_AddGroup [reducible] [constructor] : AddGroup → Type* := algebra._trans_of_pSet_of_AddGroup_1 definition Set_of_AddGroup [reducible] [constructor] : AddGroup → Set := algebra._trans_of_pSet_of_AddGroup_2 -- -- -- definition Group_of_AddAbGroup [coercion] [constructor] (G : AddAbGroup) : Group := -- AddGroup.mk G _ -- -- definition AddGroup_of_AddAbGroup [coercion] [constructor] (G : AddAbGroup) : AddGroup := AddGroup.mk G _ attribute algebra._trans_of_AddGroup_of_AddAbGroup_1 algebra._trans_of_AddGroup_of_AddAbGroup algebra._trans_of_AddGroup_of_AddAbGroup_3 [constructor] attribute algebra._trans_of_AddGroup_of_AddAbGroup_2 [unfold 1] definition add_ab_group_AddAbGroup2 [instance] (G : AddAbGroup) : add_ab_group G := AddAbGroup.struct G end algebra namespace eq definition eq.rec_to {A : Type} {a₀ : A} {P : Π⦃a₁⦄, a₀ = a₁ → Type} {a₁ : A} (p₀ : a₀ = a₁) (H : P p₀) ⦃a₂ : A⦄ (p : a₀ = a₂) : P p := begin induction p₀, induction p, exact H end definition eq.rec_to2 {A : Type} {P : Π⦃a₀ a₁⦄, a₀ = a₁ → Type} {a₀ a₀' a₁' : A} (p' : a₀' = a₁') (p₀ : a₀ = a₀') (H : P p') ⦃a₁ : A⦄ (p : a₀ = a₁) : P p := begin induction p₀, induction p', induction p, exact H end definition eq.rec_right_inv {A : Type} (f : A ≃ A) {P : Π⦃a₀ a₁⦄, f a₀ = a₁ → Type} (H : Πa, P (right_inv f a)) ⦃a₀ a₁ : A⦄ (p : f a₀ = a₁) : P p := begin revert a₀ p, refine equiv_rect f⁻¹ᵉ _ _, intro a₀ p, exact eq.rec_to (right_inv f a₀) (H a₀) p, end definition eq.rec_equiv {A B : Type} {a₀ : A} (f : A ≃ B) {P : Π{a₁}, f a₀ = f a₁ → Type} (H : P (idpath (f a₀))) ⦃a₁ : A⦄ (p : f a₀ = f a₁) : P p := begin assert qr : Σ(q : a₀ = a₁), ap f q = p, { exact ⟨eq_of_fn_eq_fn f p, ap_eq_of_fn_eq_fn' f p⟩ }, cases qr with q r, apply transport P r, induction q, exact H end definition eq.rec_equiv_symm {A B : Type} {a₁ : A} (f : A ≃ B) {P : Π{a₀}, f a₀ = f a₁ → Type} (H : P (idpath (f a₁))) ⦃a₀ : A⦄ (p : f a₀ = f a₁) : P p := begin assert qr : Σ(q : a₀ = a₁), ap f q = p, { exact ⟨eq_of_fn_eq_fn f p, ap_eq_of_fn_eq_fn' f p⟩ }, cases qr with q r, apply transport P r, induction q, exact H end definition eq.rec_equiv_to_same {A B : Type} {a₀ : A} (f : A ≃ B) {P : Π{a₁}, f a₀ = f a₁ → Type} ⦃a₁' : A⦄ (p' : f a₀ = f a₁') (H : P p') ⦃a₁ : A⦄ (p : f a₀ = f a₁) : P p := begin revert a₁' p' H a₁ p, refine eq.rec_equiv f _, exact eq.rec_equiv f end definition eq.rec_equiv_to {A A' B : Type} {a₀ : A} (f : A ≃ B) (g : A' ≃ B) {P : Π{a₁}, f a₀ = g a₁ → Type} ⦃a₁' : A'⦄ (p' : f a₀ = g a₁') (H : P p') ⦃a₁ : A'⦄ (p : f a₀ = g a₁) : P p := begin assert qr : Σ(q : g⁻¹ (f a₀) = a₁), (right_inv g (f a₀))⁻¹ ⬝ ap g q = p, { exact ⟨eq_of_fn_eq_fn g (right_inv g (f a₀) ⬝ p), whisker_left _ (ap_eq_of_fn_eq_fn' g _) ⬝ !inv_con_cancel_left⟩ }, assert q'r' : Σ(q' : g⁻¹ (f a₀) = a₁'), (right_inv g (f a₀))⁻¹ ⬝ ap g q' = p', { exact ⟨eq_of_fn_eq_fn g (right_inv g (f a₀) ⬝ p'), whisker_left _ (ap_eq_of_fn_eq_fn' g _) ⬝ !inv_con_cancel_left⟩ }, induction qr with q r, induction q'r' with q' r', induction q, induction q', induction r, induction r', exact H end definition eq.rec_grading {A A' B : Type} {a : A} (f : A ≃ B) (g : A' ≃ B) {P : Π{b}, f a = b → Type} {a' : A'} (p' : f a = g a') (H : P p') ⦃b : B⦄ (p : f a = b) : P p := begin revert b p, refine equiv_rect g _ _, exact eq.rec_equiv_to f g p' H end definition eq.rec_grading_unbased {A B B' C : Type} (f : A ≃ B) (g : B ≃ C) (h : B' ≃ C) {P : Π{b c}, g b = c → Type} {a' : A} {b' : B'} (p' : g (f a') = h b') (H : P p') ⦃b : B⦄ ⦃c : C⦄ (q : f a' = b) (p : g b = c) : P p := begin induction q, exact eq.rec_grading (f ⬝e g) h p' H p end definition eq.rec_symm {A : Type} {a₀ : A} {P : Π⦃a₁⦄, a₁ = a₀ → Type} (H : P idp) ⦃a₁ : A⦄ (p : a₁ = a₀) : P p := begin cases p, exact H end definition is_contr_homotopy_group_of_is_contr (A : Type*) (n : ℕ) [is_contr A] : is_contr (π[n] A) := begin apply is_trunc_trunc_of_is_trunc, apply is_contr_loop_of_is_trunc, apply is_trunc_of_is_contr end definition cast_fn_cast_square {A : Type} {B C : A → Type} (f : Π⦃a⦄, B a → C a) {a₁ a₂ : A} (p : a₁ = a₂) (q : a₂ = a₁) (r : p ⬝ q = idp) (b : B a₁) : cast (ap C q) (f (cast (ap B p) b)) = f b := have q⁻¹ = p, from inv_eq_of_idp_eq_con r⁻¹, begin induction this, induction q, reflexivity end section -- squares variables {A B : Type} {a a' a'' a₀₀ a₂₀ a₄₀ a₀₂ a₂₂ a₂₄ a₀₄ a₄₂ a₄₄ a₁ a₂ a₃ a₄ : A} /-a₀₀-/ {p₁₀ p₁₀' : a₀₀ = a₂₀} /-a₂₀-/ {p₃₀ : a₂₀ = a₄₀} /-a₄₀-/ {p₀₁ p₀₁' : a₀₀ = a₀₂} /-s₁₁-/ {p₂₁ p₂₁' : a₂₀ = a₂₂} /-s₃₁-/ {p₄₁ : a₄₀ = a₄₂} /-a₀₂-/ {p₁₂ p₁₂' : a₀₂ = a₂₂} /-a₂₂-/ {p₃₂ : a₂₂ = a₄₂} /-a₄₂-/ {p₀₃ : a₀₂ = a₀₄} /-s₁₃-/ {p₂₃ : a₂₂ = a₂₄} /-s₃₃-/ {p₄₃ : a₄₂ = a₄₄} /-a₀₄-/ {p₁₄ : a₀₄ = a₂₄} /-a₂₄-/ {p₃₄ : a₂₄ = a₄₄} /-a₄₄-/ variables {s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁} {s₃₁ : square p₃₀ p₃₂ p₂₁ p₄₁} {s₁₃ : square p₁₂ p₁₄ p₀₃ p₂₃} {s₃₃ : square p₃₂ p₃₄ p₂₃ p₄₃} definition natural_square_eq {A B : Type} {a a' : A} {f g : A → B} (p : f ~ g) (q : a = a') : natural_square p q = square_of_pathover (apd p q) := idp definition eq_of_square_hrfl_hconcat_eq {A : Type} {a a' : A} {p p' : a = a'} (q : p = p') : eq_of_square (hrfl ⬝hp q⁻¹) = !idp_con ⬝ q := by induction q; induction p; reflexivity definition aps_vrfl {A B : Type} {a a' : A} (f : A → B) (p : a = a') : aps f (vrefl p) = vrefl (ap f p) := by induction p; reflexivity definition aps_hrfl {A B : Type} {a a' : A} (f : A → B) (p : a = a') : aps f (hrefl p) = hrefl (ap f p) := by induction p; reflexivity -- should the following two equalities be cubes? definition natural_square_ap_fn {A B C : Type} {a a' : A} {g h : A → B} (f : B → C) (p : g ~ h) (q : a = a') : natural_square (λa, ap f (p a)) q = ap_compose f g q ⬝ph (aps f (natural_square p q) ⬝hp (ap_compose f h q)⁻¹) := begin induction q, exact !aps_vrfl⁻¹ end definition natural_square_compose {A B C : Type} {a a' : A} {g g' : B → C} (p : g ~ g') (f : A → B) (q : a = a') : natural_square (λa, p (f a)) q = ap_compose g f q ⬝ph (natural_square p (ap f q) ⬝hp (ap_compose g' f q)⁻¹) := by induction q; reflexivity definition natural_square_eq2 {A B : Type} {a a' : A} {f f' : A → B} (p : f ~ f') {q q' : a = a'} (r : q = q') : natural_square p q = ap02 f r ⬝ph (natural_square p q' ⬝hp (ap02 f' r)⁻¹) := by induction r; reflexivity definition natural_square_refl {A B : Type} {a a' : A} (f : A → B) (q : a = a') : natural_square (homotopy.refl f) q = hrfl := by induction q; reflexivity definition aps_eq_hconcat {p₀₁'} (f : A → B) (q : p₀₁' = p₀₁) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) : aps f (q ⬝ph s₁₁) = ap02 f q ⬝ph aps f s₁₁ := by induction q; reflexivity definition aps_hconcat_eq {p₂₁'} (f : A → B) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) (r : p₂₁' = p₂₁) : aps f (s₁₁ ⬝hp r⁻¹) = aps f s₁₁ ⬝hp (ap02 f r)⁻¹ := by induction r; reflexivity definition aps_hconcat_eq' {p₂₁'} (f : A → B) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) (r : p₂₁ = p₂₁') : aps f (s₁₁ ⬝hp r) = aps f s₁₁ ⬝hp ap02 f r := by induction r; reflexivity definition aps_square_of_eq (f : A → B) (s : p₁₀ ⬝ p₂₁ = p₀₁ ⬝ p₁₂) : aps f (square_of_eq s) = square_of_eq ((ap_con f p₁₀ p₂₁)⁻¹ ⬝ ap02 f s ⬝ ap_con f p₀₁ p₁₂) := by induction p₁₂; esimp at *; induction s; induction p₂₁; induction p₁₀; reflexivity definition aps_eq_hconcat_eq {p₀₁' p₂₁'} (f : A → B) (q : p₀₁' = p₀₁) (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) (r : p₂₁' = p₂₁) : aps f (q ⬝ph s₁₁ ⬝hp r⁻¹) = ap02 f q ⬝ph aps f s₁₁ ⬝hp (ap02 f r)⁻¹ := by induction q; induction r; reflexivity end section -- cubes variables {A B : Type} {a₀₀₀ a₂₀₀ a₀₂₀ a₂₂₀ a₀₀₂ a₂₀₂ a₀₂₂ a₂₂₂ a a' : A} {p₁₀₀ : a₀₀₀ = a₂₀₀} {p₀₁₀ : a₀₀₀ = a₀₂₀} {p₀₀₁ : a₀₀₀ = a₀₀₂} {p₁₂₀ : a₀₂₀ = a₂₂₀} {p₂₁₀ : a₂₀₀ = a₂₂₀} {p₂₀₁ : a₂₀₀ = a₂₀₂} {p₁₀₂ : a₀₀₂ = a₂₀₂} {p₀₁₂ : a₀₀₂ = a₀₂₂} {p₀₂₁ : a₀₂₀ = a₀₂₂} {p₁₂₂ : a₀₂₂ = a₂₂₂} {p₂₁₂ : a₂₀₂ = a₂₂₂} {p₂₂₁ : a₂₂₀ = a₂₂₂} {s₀₁₁ : square p₀₁₀ p₀₁₂ p₀₀₁ p₀₂₁} {s₂₁₁ : square p₂₁₀ p₂₁₂ p₂₀₁ p₂₂₁} {s₁₀₁ : square p₁₀₀ p₁₀₂ p₀₀₁ p₂₀₁} {s₁₂₁ : square p₁₂₀ p₁₂₂ p₀₂₁ p₂₂₁} {s₁₁₀ : square p₀₁₀ p₂₁₀ p₁₀₀ p₁₂₀} {s₁₁₂ : square p₀₁₂ p₂₁₂ p₁₀₂ p₁₂₂} {b₁ b₂ b₃ b₄ : B} (c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) definition whisker001 {p₀₀₁' : a₀₀₀ = a₀₀₂} (q : p₀₀₁' = p₀₀₁) (c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) : cube (q ⬝ph s₀₁₁) s₂₁₁ (q ⬝ph s₁₀₁) s₁₂₁ s₁₁₀ s₁₁₂ := by induction q; exact c definition whisker021 {p₀₂₁' : a₀₂₀ = a₀₂₂} (q : p₀₂₁' = p₀₂₁) (c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) : cube (s₀₁₁ ⬝hp q⁻¹) s₂₁₁ s₁₀₁ (q ⬝ph s₁₂₁) s₁₁₀ s₁₁₂ := by induction q; exact c definition whisker021' {p₀₂₁' : a₀₂₀ = a₀₂₂} (q : p₀₂₁ = p₀₂₁') (c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) : cube (s₀₁₁ ⬝hp q) s₂₁₁ s₁₀₁ (q⁻¹ ⬝ph s₁₂₁) s₁₁₀ s₁₁₂ := by induction q; exact c definition whisker201 {p₂₀₁' : a₂₀₀ = a₂₀₂} (q : p₂₀₁' = p₂₀₁) (c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) : cube s₀₁₁ (q ⬝ph s₂₁₁) (s₁₀₁ ⬝hp q⁻¹) s₁₂₁ s₁₁₀ s₁₁₂ := by induction q; exact c definition whisker201' {p₂₀₁' : a₂₀₀ = a₂₀₂} (q : p₂₀₁ = p₂₀₁') (c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) : cube s₀₁₁ (q⁻¹ ⬝ph s₂₁₁) (s₁₀₁ ⬝hp q) s₁₂₁ s₁₁₀ s₁₁₂ := by induction q; exact c definition whisker221 {p₂₂₁' : a₂₂₀ = a₂₂₂} (q : p₂₂₁ = p₂₂₁') (c : cube s₀₁₁ s₂₁₁ s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) : cube s₀₁₁ (s₂₁₁ ⬝hp q) s₁₀₁ (s₁₂₁ ⬝hp q) s₁₁₀ s₁₁₂ := by induction q; exact c definition move221 {p₂₂₁' : a₂₂₀ = a₂₂₂} {s₁₂₁ : square p₁₂₀ p₁₂₂ p₀₂₁ p₂₂₁'} (q : p₂₂₁ = p₂₂₁') (c : cube s₀₁₁ (s₂₁₁ ⬝hp q) s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) : cube s₀₁₁ s₂₁₁ s₁₀₁ (s₁₂₁ ⬝hp q⁻¹) s₁₁₀ s₁₁₂ := by induction q; exact c definition move201 {p₂₀₁' : a₂₀₀ = a₂₀₂} {s₁₀₁ : square p₁₀₀ p₁₀₂ p₀₀₁ p₂₀₁'} (q : p₂₀₁' = p₂₀₁) (c : cube s₀₁₁ (q ⬝ph s₂₁₁) s₁₀₁ s₁₂₁ s₁₁₀ s₁₁₂) : cube s₀₁₁ s₂₁₁ (s₁₀₁ ⬝hp q) s₁₂₁ s₁₁₀ s₁₁₂ := by induction q; exact c end definition ap_eq_ap010 {A B C : Type} (f : A → B → C) {a a' : A} (p : a = a') (b : B) : ap (λa, f a b) p = ap010 f p b := by reflexivity definition ap011_idp {A B C : Type} (f : A → B → C) {a a' : A} (p : a = a') (b : B) : ap011 f p idp = ap010 f p b := by reflexivity definition ap011_flip {A B C : Type} (f : A → B → C) {a a' : A} {b b' : B} (p : a = a') (q : b = b') : ap011 f p q = ap011 (λb a, f a b) q p := by induction q; induction p; reflexivity theorem apd_constant' {A A' : Type} {B : A' → Type} {a₁ a₂ : A} {a' : A'} (b : B a') (p : a₁ = a₂) : apd (λx, b) p = pathover_of_eq p idp := by induction p; reflexivity definition apo011 {A : Type} {B C D : A → Type} {a a' : A} {p : a = a'} {b : B a} {b' : B a'} {c : C a} {c' : C a'} (f : Π⦃a⦄, B a → C a → D a) (q : b =[p] b') (r : c =[p] c') : f b c =[p] f b' c' := begin induction q, induction r using idp_rec_on, exact idpo end definition ap011_ap_square_right {A B C : Type} (f : A → B → C) {a a' : A} (p : a = a') {b₁ b₂ b₃ : B} {q₁₂ : b₁ = b₂} {q₂₃ : b₂ = b₃} {q₁₃ : b₁ = b₃} (r : q₁₂ ⬝ q₂₃ = q₁₃) : square (ap011 f p q₁₂) (ap (λx, f x b₃) p) (ap (f a) q₁₃) (ap (f a') q₂₃) := by induction r; induction q₂₃; induction q₁₂; induction p; exact ids definition ap011_ap_square_left {A B C : Type} (f : B → A → C) {a a' : A} (p : a = a') {b₁ b₂ b₃ : B} {q₁₂ : b₁ = b₂} {q₂₃ : b₂ = b₃} {q₁₃ : b₁ = b₃} (r : q₁₂ ⬝ q₂₃ = q₁₃) : square (ap011 f q₁₂ p) (ap (f b₃) p) (ap (λx, f x a) q₁₃) (ap (λx, f x a') q₂₃) := by induction r; induction q₂₃; induction q₁₂; induction p; exact ids definition ap_ap011 {A B C D : Type} (g : C → D) (f : A → B → C) {a a' : A} {b b' : B} (p : a = a') (q : b = b') : ap g (ap011 f p q) = ap011 (λa b, g (f a b)) p q := begin induction p, exact (ap_compose g (f a) q)⁻¹ end definition con2_assoc {A : Type} {x y z t : A} {p p' : x = y} {q q' : y = z} {r r' : z = t} (h : p = p') (h' : q = q') (h'' : r = r') : square ((h ◾ h') ◾ h'') (h ◾ (h' ◾ h'')) (con.assoc p q r) (con.assoc p' q' r') := by induction h; induction h'; induction h''; exact hrfl definition con_left_inv_idp {A : Type} {x : A} {p : x = x} (q : p = idp) : con.left_inv p = q⁻² ◾ q := by cases q; reflexivity definition eckmann_hilton_con2 {A : Type} {x : A} {p p' q q': idp = idp :> x = x} (h : p = p') (h' : q = q') : square (h ◾ h') (h' ◾ h) (eckmann_hilton p q) (eckmann_hilton p' q') := by induction h; induction h'; exact hrfl definition ap_con_fn {A B : Type} {a a' : A} {b : B} (g h : A → b = b) (p : a = a') : ap (λa, g a ⬝ h a) p = ap g p ◾ ap h p := by induction p; reflexivity protected definition homotopy.rfl [reducible] [unfold_full] {A B : Type} {f : A → B} : f ~ f := homotopy.refl f definition compose_id {A B : Type} (f : A → B) : f ∘ id ~ f := by reflexivity definition id_compose {A B : Type} (f : A → B) : id ∘ f ~ f := by reflexivity -- move to eq2 definition ap_eq_ap011 {A B C X : Type} (f : A → B → C) (g : X → A) (h : X → B) {x x' : X} (p : x = x') : ap (λx, f (g x) (h x)) p = ap011 f (ap g p) (ap h p) := by induction p; reflexivity definition ap_is_weakly_constant {A B : Type} {f : A → B} (h : is_weakly_constant f) {a a' : A} (p : a = a') : ap f p = (h a a)⁻¹ ⬝ h a a' := by induction p; exact !con.left_inv⁻¹ definition ap_is_constant_idp {A B : Type} {f : A → B} {b : B} (p : Πa, f a = b) {a : A} (q : a = a) (r : q = idp) : ap_is_constant p q = ap02 f r ⬝ (con.right_inv (p a))⁻¹ := by cases r; exact !idp_con⁻¹ definition con_right_inv_natural {A : Type} {a a' : A} {p p' : a = a'} (q : p = p') : con.right_inv p = q ◾ q⁻² ⬝ con.right_inv p' := by induction q; induction p; reflexivity definition whisker_right_ap {A B : Type} {a a' : A}{b₁ b₂ b₃ : B} (q : b₂ = b₃) (f : A → b₁ = b₂) (p : a = a') : whisker_right q (ap f p) = ap (λa, f a ⬝ q) p := by induction p; reflexivity infix ` ⬝hty `:75 := homotopy.trans postfix `⁻¹ʰᵗʸ`:(max+1) := homotopy.symm definition hassoc {A B C D : Type} (h : C → D) (g : B → C) (f : A → B) : (h ∘ g) ∘ f ~ h ∘ (g ∘ f) := λa, idp -- to algebra.homotopy_group definition homotopy_group_homomorphism_pcompose (n : ℕ) [H : is_succ n] {A B C : Type*} (g : B →* C) (f : A →* B) : π→g[n] (g ∘* f) ~ π→g[n] g ∘ π→g[n] f := begin induction H with n, exact to_homotopy (homotopy_group_functor_compose (succ n) g f) end definition apn_pinv (n : ℕ) {A B : Type*} (f : A ≃* B) : Ω→[n] f⁻¹ᵉ* ~* (loopn_pequiv_loopn n f)⁻¹ᵉ* := begin refine !to_pinv_pequiv_MK2⁻¹* end -- definition homotopy_group_homomorphism_pinv (n : ℕ) {A B : Type*} (f : A ≃* B) : -- π→g[n+1] f⁻¹ᵉ* ~ (homotopy_group_isomorphism_of_pequiv n f)⁻¹ᵍ := -- begin -- -- refine ptrunc_functor_phomotopy 0 !apn_pinv ⬝hty _, -- -- intro x, esimp, -- end -- definition natural_square_tr_eq {A B : Type} {a a' : A} {f g : A → B} -- (p : f ~ g) (q : a = a') : natural_square p q = square_of_pathover (apd p q) := -- idp definition inv_homotopy_inv {A B : Type} {f g : A → B} [is_equiv f] [is_equiv g] (p : f ~ g) : f⁻¹ ~ g⁻¹ := λa, inv_eq_of_eq (p (g⁻¹ a) ⬝ right_inv g a)⁻¹ definition to_inv_homotopy_inv {A B : Type} {f g : A ≃ B} (p : f ~ g) : f⁻¹ ~ g⁻¹ := inv_homotopy_inv p definition compose2 {A B C : Type} {g g' : B → C} {f f' : A → B} (p : g ~ g') (q : f ~ f') : g ∘ f ~ g' ∘ f' := hwhisker_right f p ⬝hty hwhisker_left g' q section hsquare variables {A₀₀ A₂₀ A₄₀ A₀₂ A₂₂ A₄₂ A₀₄ A₂₄ A₄₄ : Type} {f₁₀ : A₀₀ → A₂₀} {f₃₀ : A₂₀ → A₄₀} {f₀₁ : A₀₀ → A₀₂} {f₂₁ : A₂₀ → A₂₂} {f₄₁ : A₄₀ → A₄₂} {f₁₂ : A₀₂ → A₂₂} {f₃₂ : A₂₂ → A₄₂} {f₀₃ : A₀₂ → A₀₄} {f₂₃ : A₂₂ → A₂₄} {f₄₃ : A₄₂ → A₄₄} {f₁₄ : A₀₄ → A₂₄} {f₃₄ : A₂₄ → A₄₄} definition hsquare [reducible] (f₁₀ : A₀₀ → A₂₀) (f₁₂ : A₀₂ → A₂₂) (f₀₁ : A₀₀ → A₀₂) (f₂₁ : A₂₀ → A₂₂) : Type := f₂₁ ∘ f₁₀ ~ f₁₂ ∘ f₀₁ definition hsquare_of_homotopy (p : f₂₁ ∘ f₁₀ ~ f₁₂ ∘ f₀₁) : hsquare f₁₀ f₁₂ f₀₁ f₂₁ := p definition homotopy_of_hsquare (p : hsquare f₁₀ f₁₂ f₀₁ f₂₁) : f₂₁ ∘ f₁₀ ~ f₁₂ ∘ f₀₁ := p definition homotopy_top_of_hsquare {f₂₁ : A₂₀ ≃ A₂₂} (p : hsquare f₁₀ f₁₂ f₀₁ f₂₁) : f₁₀ ~ f₂₁⁻¹ ∘ f₁₂ ∘ f₀₁ := homotopy_inv_of_homotopy_post _ _ _ p definition homotopy_top_of_hsquare' [is_equiv f₂₁] (p : hsquare f₁₀ f₁₂ f₀₁ f₂₁) : f₁₀ ~ f₂₁⁻¹ ∘ f₁₂ ∘ f₀₁ := homotopy_inv_of_homotopy_post _ _ _ p definition hhconcat (p : hsquare f₁₀ f₁₂ f₀₁ f₂₁) (q : hsquare f₃₀ f₃₂ f₂₁ f₄₁) : hsquare (f₃₀ ∘ f₁₀) (f₃₂ ∘ f₁₂) f₀₁ f₄₁ := hwhisker_right f₁₀ q ⬝hty hwhisker_left f₃₂ p definition hvconcat (p : hsquare f₁₀ f₁₂ f₀₁ f₂₁) (q : hsquare f₁₂ f₁₄ f₀₃ f₂₃) : hsquare f₁₀ f₁₄ (f₀₃ ∘ f₀₁) (f₂₃ ∘ f₂₁) := (hhconcat p⁻¹ʰᵗʸ q⁻¹ʰᵗʸ)⁻¹ʰᵗʸ definition hhinverse {f₁₀ : A₀₀ ≃ A₂₀} {f₁₂ : A₀₂ ≃ A₂₂} (p : hsquare f₁₀ f₁₂ f₀₁ f₂₁) : hsquare f₁₀⁻¹ᵉ f₁₂⁻¹ᵉ f₂₁ f₀₁ := λb, eq_inv_of_eq ((p (f₁₀⁻¹ᵉ b))⁻¹ ⬝ ap f₂₁ (to_right_inv f₁₀ b)) definition hvinverse {f₀₁ : A₀₀ ≃ A₀₂} {f₂₁ : A₂₀ ≃ A₂₂} (p : hsquare f₁₀ f₁₂ f₀₁ f₂₁) : hsquare f₁₂ f₁₀ f₀₁⁻¹ᵉ f₂₁⁻¹ᵉ := (hhinverse p⁻¹ʰᵗʸ)⁻¹ʰᵗʸ infix ` ⬝htyh `:73 := hhconcat infix ` ⬝htyv `:73 := hvconcat postfix `⁻¹ʰᵗʸʰ`:(max+1) := hhinverse postfix `⁻¹ʰᵗʸᵛ`:(max+1) := hvinverse end hsquare -- move to init.funext protected definition homotopy.rec_on_idp_left [recursor] {A : Type} {P : A → Type} {g : Πa, P a} {Q : Πf, (f ~ g) → Type} {f : Π x, P x} (p : f ~ g) (H : Q g (homotopy.refl g)) : Q f p := begin induction p using homotopy.rec_on, induction q, exact H end --eq2 (duplicate of ap_compose_ap02_constant) definition ap02_ap_constant {A B C : Type} {a a' : A} (f : B → C) (b : B) (p : a = a') : square (ap_constant p (f b)) (ap02 f (ap_constant p b)) (ap_compose f (λx, b) p) idp := by induction p; exact ids definition ap_constant_compose {A B C : Type} {a a' : A} (c : C) (f : A → B) (p : a = a') : square (ap_constant p c) (ap_constant (ap f p) c) (ap_compose (λx, c) f p) idp := by induction p; exact ids definition ap02_constant {A B : Type} {a a' : A} (b : B) {p p' : a = a'} (q : p = p') : square (ap_constant p b) (ap_constant p' b) (ap02 (λx, b) q) idp := by induction q; exact vrfl end eq open eq namespace wedge open pushout unit protected definition glue (A B : Type*) : inl pt = inr pt :> wedge A B := pushout.glue ⋆ end wedge namespace nat definition iterate_succ {A : Type} (f : A → A) (n : ℕ) (x : A) : f^[succ n] x = f^[n] (f x) := by induction n with n p; reflexivity; exact ap f p lemma iterate_sub {A : Type} (f : A ≃ A) {n m : ℕ} (h : n ≥ m) (a : A) : iterate f (n - m) a = iterate f n (iterate f⁻¹ m a) := begin revert n h, induction m with m p: intro n h, { reflexivity }, { cases n with n, exfalso, apply not_succ_le_zero _ h, rewrite [succ_sub_succ], refine p n (le_of_succ_le_succ h) ⬝ _, refine ap (f^[n]) _ ⬝ !iterate_succ⁻¹, exact !to_right_inv⁻¹ } end definition iterate_commute {A : Type} {f g : A → A} (n : ℕ) (h : f ∘ g ~ g ∘ f) : iterate f n ∘ g ~ g ∘ iterate f n := by induction n with n IH; reflexivity; exact λx, ap f (IH x) ⬝ !h definition iterate_equiv {A : Type} (f : A ≃ A) (n : ℕ) : A ≃ A := equiv.mk (iterate f n) (by induction n with n IH; apply is_equiv_id; exact is_equiv_compose f (iterate f n)) definition iterate_inv {A : Type} (f : A ≃ A) (n : ℕ) : (iterate_equiv f n)⁻¹ ~ iterate f⁻¹ n := begin induction n with n p: intro a, reflexivity, exact p (f⁻¹ a) ⬝ !iterate_succ⁻¹ end definition iterate_left_inv {A : Type} (f : A ≃ A) (n : ℕ) (a : A) : f⁻¹ᵉ^[n] (f^[n] a) = a := (iterate_inv f n (f^[n] a))⁻¹ ⬝ to_left_inv (iterate_equiv f n) a definition iterate_right_inv {A : Type} (f : A ≃ A) (n : ℕ) (a : A) : f^[n] (f⁻¹ᵉ^[n] a) = a := ap (f^[n]) (iterate_inv f n a)⁻¹ ⬝ to_right_inv (iterate_equiv f n) a end nat namespace pi definition is_contr_pi_of_neg {A : Type} (B : A → Type) (H : ¬ A) : is_contr (Πa, B a) := begin apply is_contr.mk (λa, empty.elim (H a)), intro f, apply eq_of_homotopy, intro x, contradiction end end pi namespace trunc -- TODO: redefine loopn_ptrunc_pequiv definition apn_ptrunc_functor (n : ℕ₋₂) (k : ℕ) {A B : Type*} (f : A →* B) : Ω→[k] (ptrunc_functor (n+k) f) ∘* (loopn_ptrunc_pequiv n k A)⁻¹ᵉ* ~* (loopn_ptrunc_pequiv n k B)⁻¹ᵉ* ∘* ptrunc_functor n (Ω→[k] f) := begin revert n, induction k with k IH: intro n, { reflexivity }, { exact sorry } end definition ptrunc_pequiv_natural [constructor] (n : ℕ₋₂) {A B : Type*} (f : A →* B) [is_trunc n A] [is_trunc n B] : f ∘* ptrunc_pequiv n A ~* ptrunc_pequiv n B ∘* ptrunc_functor n f := begin fapply phomotopy.mk, { intro a, induction a with a, reflexivity }, { refine !idp_con ⬝ _ ⬝ !idp_con⁻¹, refine !ap_compose'⁻¹ ⬝ _, apply ap_id } end definition ptr_natural [constructor] (n : ℕ₋₂) {A B : Type*} (f : A →* B) : ptrunc_functor n f ∘* ptr n A ~* ptr n B ∘* f := begin fapply phomotopy.mk, { intro a, reflexivity }, { reflexivity } end definition ptrunc_elim_pcompose (n : ℕ₋₂) {A B C : Type*} (g : B →* C) (f : A →* B) [is_trunc n B] [is_trunc n C] : ptrunc.elim n (g ∘* f) ~* g ∘* ptrunc.elim n f := begin fapply phomotopy.mk, { intro a, induction a with a, reflexivity }, { apply idp_con } end end trunc namespace is_equiv definition inv_homotopy_inv {A B : Type} {f g : A → B} [is_equiv f] [is_equiv g] (p : f ~ g) : f⁻¹ ~ g⁻¹ := λb, (left_inv g (f⁻¹ b))⁻¹ ⬝ ap g⁻¹ ((p (f⁻¹ b))⁻¹ ⬝ right_inv f b) definition to_inv_homotopy_to_inv {A B : Type} {f g : A ≃ B} (p : f ~ g) : f⁻¹ᵉ ~ g⁻¹ᵉ := inv_homotopy_inv p end is_equiv namespace prod definition pprod_functor [constructor] {A B C D : Type*} (f : A →* C) (g : B →* D) : A ×* B →* C ×* D := pmap.mk (prod_functor f g) (prod_eq (respect_pt f) (respect_pt g)) open prod.ops definition prod_pathover_equiv {A : Type} {B C : A → Type} {a a' : A} (p : a = a') (x : B a × C a) (x' : B a' × C a') : x =[p] x' ≃ x.1 =[p] x'.1 × x.2 =[p] x'.2 := begin fapply equiv.MK, { intro q, induction q, constructor: constructor }, { intro v, induction v with q r, exact prod_pathover _ _ _ q r }, { intro v, induction v with q r, induction x with b c, induction x' with b' c', esimp at *, induction q, refine idp_rec_on r _, reflexivity }, { intro q, induction q, induction x with b c, reflexivity } end end prod open prod namespace sigma -- set_option pp.notation false -- set_option pp.binder_types true open sigma.ops definition pathover_pr1 [unfold 9] {A : Type} {B : A → Type} {C : Πa, B a → Type} {a a' : A} {p : a = a'} {x : Σb, C a b} {x' : Σb', C a' b'} (q : x =[p] x') : x.1 =[p] x'.1 := begin induction q, constructor end definition is_prop_elimo_self {A : Type} (B : A → Type) {a : A} (b : B a) {H : is_prop (B a)} : @is_prop.elimo A B a a idp b b H = idpo := !is_prop.elim definition sigma_pathover_equiv_of_is_prop {A : Type} {B : A → Type} (C : Πa, B a → Type) {a a' : A} (p : a = a') (x : Σb, C a b) (x' : Σb', C a' b') [Πa b, is_prop (C a b)] : x =[p] x' ≃ x.1 =[p] x'.1 := begin fapply equiv.MK, { exact pathover_pr1 }, { intro q, induction x with b c, induction x' with b' c', esimp at q, induction q, apply pathover_idp_of_eq, exact sigma_eq idp !is_prop.elimo }, { intro q, induction x with b c, induction x' with b' c', esimp at q, induction q, have c = c', from !is_prop.elim, induction this, rewrite [▸*, is_prop_elimo_self (C a) c] }, { intro q, induction q, induction x with b c, rewrite [▸*, is_prop_elimo_self (C a) c] } end definition sigma_ua {A B : Type} (C : A ≃ B → Type) : (Σ(p : A = B), C (equiv_of_eq p)) ≃ Σ(e : A ≃ B), C e := sigma_equiv_sigma_left' !eq_equiv_equiv -- definition sigma_pathover_equiv_of_is_prop {A : Type} {B : A → Type} {C : Πa, B a → Type} -- {a a' : A} {p : a = a'} {b : B a} {b' : B a'} {c : C a b} {c' : C a' b'} -- [Πa b, is_prop (C a b)] : ⟨b, c⟩ =[p] ⟨b', c'⟩ ≃ b =[p] b' := -- begin -- fapply equiv.MK, -- { exact pathover_pr1 }, -- { intro q, induction q, apply pathover_idp_of_eq, exact sigma_eq idp !is_prop.elimo }, -- { intro q, induction q, -- have c = c', from !is_prop.elim, induction this, -- rewrite [▸*, is_prop_elimo_self (C a) c] }, -- { esimp, generalize ⟨b, c⟩, intro x q, } -- end --rexact @(ap pathover_pr1) _ idpo _, end sigma open sigma namespace pointed definition phomotopy_of_homotopy {X Y : Type*} {f g : X →* Y} (h : f ~ g) [is_set Y] : f ~* g := begin fapply phomotopy.mk, { exact h }, { apply is_set.elim } end end pointed open pointed namespace group open is_trunc algebra definition to_fun_isomorphism_trans {G H K : Group} (φ : G ≃g H) (ψ : H ≃g K) : φ ⬝g ψ ~ ψ ∘ φ := by reflexivity definition add_homomorphism (G H : AddGroup) : Type := homomorphism G H infix ` →a `:55 := add_homomorphism definition agroup_fun [coercion] [unfold 3] [reducible] {G H : AddGroup} (φ : G →a H) : G → H := φ definition add_homomorphism.struct [instance] {G H : AddGroup} (φ : G →a H) : is_add_hom φ := homomorphism.addstruct φ definition add_homomorphism.mk [constructor] {G H : AddGroup} (φ : G → H) (h : is_add_hom φ) : G →g H := homomorphism.mk φ h definition add_homomorphism_compose [constructor] [trans] {G₁ G₂ G₃ : AddGroup} (ψ : G₂ →a G₃) (φ : G₁ →a G₂) : G₁ →a G₃ := add_homomorphism.mk (ψ ∘ φ) (is_add_hom_compose _ _) definition add_homomorphism_id [constructor] [refl] (G : AddGroup) : G →a G := add_homomorphism.mk (@id G) (is_add_hom_id G) abbreviation aid [constructor] := @add_homomorphism_id infixr ` ∘a `:75 := add_homomorphism_compose definition to_respect_add' {H₁ H₂ : AddGroup} (χ : H₁ →a H₂) (g h : H₁) : χ (g + h) = χ g + χ h := respect_add χ g h theorem to_respect_zero' {H₁ H₂ : AddGroup} (χ : H₁ →a H₂) : χ 0 = 0 := respect_zero χ theorem to_respect_neg' {H₁ H₂ : AddGroup} (χ : H₁ →a H₂) (g : H₁) : χ (-g) = -(χ g) := respect_neg χ g definition homomorphism_add [constructor] {G H : AddAbGroup} (φ ψ : G →a H) : G →a H := add_homomorphism.mk (λg, φ g + ψ g) abstract begin intro g g', refine ap011 add !to_respect_add' !to_respect_add' ⬝ _, refine !add.assoc ⬝ ap (add _) (!add.assoc⁻¹ ⬝ ap (λx, x + _) !add.comm ⬝ !add.assoc) ⬝ !add.assoc⁻¹ end end definition homomorphism_mul [constructor] {G H : AbGroup} (φ ψ : G →g H) : G →g H := homomorphism.mk (λg, φ g * ψ g) (to_respect_add (homomorphism_add φ ψ)) definition pmap_of_homomorphism_gid (G : Group) : pmap_of_homomorphism (gid G) ~* pid G := begin fapply phomotopy_of_homotopy, reflexivity end definition pmap_of_homomorphism_gcompose {G H K : Group} (ψ : H →g K) (φ : G →g H) : pmap_of_homomorphism (ψ ∘g φ) ~* pmap_of_homomorphism ψ ∘* pmap_of_homomorphism φ := begin fapply phomotopy_of_homotopy, reflexivity end definition pmap_of_homomorphism_phomotopy {G H : Group} {φ ψ : G →g H} (H : φ ~ ψ) : pmap_of_homomorphism φ ~* pmap_of_homomorphism ψ := begin fapply phomotopy_of_homotopy, exact H end definition pequiv_of_isomorphism_trans {G₁ G₂ G₃ : Group} (φ : G₁ ≃g G₂) (ψ : G₂ ≃g G₂) : pequiv_of_isomorphism (φ ⬝g ψ) ~* pequiv_of_isomorphism ψ ∘* pequiv_of_isomorphism φ := begin apply phomotopy_of_homotopy, reflexivity end definition isomorphism_eq {G H : Group} {φ ψ : G ≃g H} (p : φ ~ ψ) : φ = ψ := begin induction φ with φ φe, induction ψ with ψ ψe, exact apd011 isomorphism.mk (homomorphism_eq p) !is_prop.elimo end definition is_set_isomorphism [instance] (G H : Group) : is_set (G ≃g H) := begin have H : G ≃g H ≃ Σ(f : G →g H), is_equiv f, begin fapply equiv.MK, { intro φ, induction φ, constructor, assumption }, { intro v, induction v, constructor, assumption }, { intro v, induction v, reflexivity }, { intro φ, induction φ, reflexivity } end, apply is_trunc_equiv_closed_rev, exact H end definition is_equiv_mul_right [constructor] {A : Group} (a : A) : is_equiv (λb, b * a) := adjointify _ (λb : A, b * a⁻¹) (λb, !inv_mul_cancel_right) (λb, !mul_inv_cancel_right) definition right_action [constructor] {A : Group} (a : A) : A ≃ A := equiv.mk _ (is_equiv_mul_right a) definition is_equiv_add_right [constructor] {A : AddGroup} (a : A) : is_equiv (λb, b + a) := adjointify _ (λb : A, b - a) (λb, !neg_add_cancel_right) (λb, !add_neg_cancel_right) definition add_right_action [constructor] {A : AddGroup} (a : A) : A ≃ A := equiv.mk _ (is_equiv_add_right a) section variables {A B : Type} (f : A ≃ B) [ab_group A] definition group_equiv_mul_comm (b b' : B) : group_equiv_mul f b b' = group_equiv_mul f b' b := by rewrite [↑group_equiv_mul, mul.comm] definition ab_group_equiv_closed : ab_group B := ⦃ab_group, group_equiv_closed f, mul_comm := group_equiv_mul_comm f⦄ end definition ab_group_of_is_contr (A : Type) [is_contr A] : ab_group A := have ab_group unit, from ab_group_unit, ab_group_equiv_closed (equiv_unit_of_is_contr A)⁻¹ᵉ definition group_of_is_contr (A : Type) [is_contr A] : group A := have ab_group A, from ab_group_of_is_contr A, by apply _ definition ab_group_lift_unit : ab_group (lift unit) := ab_group_of_is_contr (lift unit) definition trivial_ab_group_lift : AbGroup := AbGroup.mk _ ab_group_lift_unit definition homomorphism_of_is_contr_right (A : Group) {B : Type} (H : is_contr B) : A →g Group.mk B (group_of_is_contr B) := group.homomorphism.mk (λa, center _) (λa a', !is_prop.elim) open trunc pointed is_conn definition ab_group_homotopy_group_of_is_conn (n : ℕ) (A : Type*) [H : is_conn 1 A] : ab_group (π[n] A) := begin have is_conn 0 A, from !is_conn_of_is_conn_succ, cases n with n, { unfold [homotopy_group, ptrunc], apply ab_group_of_is_contr }, cases n with n, { unfold [homotopy_group, ptrunc], apply ab_group_of_is_contr }, exact ab_group_homotopy_group n A end -- definition is_equiv_isomorphism -- some extra instances for type class inference -- definition is_mul_hom_comm_homomorphism [instance] {G G' : AbGroup} (φ : G →g G') -- : @is_mul_hom G G' (@ab_group.to_group _ (AbGroup.struct G)) -- (@ab_group.to_group _ (AbGroup.struct G')) φ := -- homomorphism.struct φ -- definition is_mul_hom_comm_homomorphism1 [instance] {G G' : AbGroup} (φ : G →g G') -- : @is_mul_hom G G' _ -- (@ab_group.to_group _ (AbGroup.struct G')) φ := -- homomorphism.struct φ -- definition is_mul_hom_comm_homomorphism2 [instance] {G G' : AbGroup} (φ : G →g G') -- : @is_mul_hom G G' (@ab_group.to_group _ (AbGroup.struct G)) _ φ := -- homomorphism.struct φ end group open group namespace function variables {A B : Type} {f f' : A → B} definition is_embedding_homotopy_closed (p : f ~ f') (H : is_embedding f) : is_embedding f' := begin intro a a', fapply is_equiv_of_equiv_of_homotopy, exact equiv.mk (ap f) _ ⬝e equiv_eq_closed_left _ (p a) ⬝e equiv_eq_closed_right _ (p a'), intro q, esimp, exact (eq_bot_of_square (transpose (natural_square p q)))⁻¹ end definition is_embedding_homotopy_closed_rev (p : f' ~ f) (H : is_embedding f) : is_embedding f' := is_embedding_homotopy_closed p⁻¹ʰᵗʸ H definition is_surjective_homotopy_closed (p : f ~ f') (H : is_surjective f) : is_surjective f' := begin intro b, induction H b with a q, exact image.mk a ((p a)⁻¹ ⬝ q) end definition is_surjective_homotopy_closed_rev (p : f' ~ f) (H : is_surjective f) : is_surjective f' := is_surjective_homotopy_closed p⁻¹ʰᵗʸ H definition is_equiv_ap1_gen_of_is_embedding {A B : Type} (f : A → B) [is_embedding f] {a a' : A} {b b' : B} (q : f a = b) (q' : f a' = b') : is_equiv (ap1_gen f q q') := begin induction q, induction q', exact is_equiv.homotopy_closed _ (ap1_gen_idp_left f)⁻¹ʰᵗʸ, end definition is_equiv_ap1_of_is_embedding {A B : Type*} (f : A →* B) [is_embedding f] : is_equiv (Ω→ f) := is_equiv_ap1_gen_of_is_embedding f (respect_pt f) (respect_pt f) definition loop_pequiv_loop_of_is_embedding [constructor] {A B : Type*} (f : A →* B) [is_embedding f] : Ω A ≃* Ω B := pequiv_of_pmap (Ω→ f) (is_equiv_ap1_of_is_embedding f) definition loopn_pequiv_loopn_of_is_embedding [constructor] (n : ℕ) [H : is_succ n] {A B : Type*} (f : A →* B) [is_embedding f] : Ω[n] A ≃* Ω[n] B := begin induction H with n, exact !loopn_succ_in ⬝e* loopn_pequiv_loopn n (loop_pequiv_loop_of_is_embedding f) ⬝e* !loopn_succ_in⁻¹ᵉ* end definition homotopy_group_isomorphism_of_is_embedding (n : ℕ) [H : is_succ n] {A B : Type*} (f : A →* B) [H2 : is_embedding f] : πg[n] A ≃g πg[n] B := begin apply isomorphism.mk (homotopy_group_homomorphism n f), induction H with n, apply is_equiv_of_equiv_of_homotopy (ptrunc_pequiv_ptrunc 0 (loopn_pequiv_loopn_of_is_embedding (n+1) f)), exact sorry end end function open function namespace fiber open pointed definition pcompose_ppoint {A B : Type*} (f : A →* B) : f ∘* ppoint f ~* pconst (pfiber f) B := begin fapply phomotopy.mk, { exact point_eq }, { exact !idp_con⁻¹ } end definition point_fiber_eq {A B : Type} {f : A → B} {b : B} {x y : fiber f b} (p : point x = point y) (q : point_eq x = ap f p ⬝ point_eq y) : ap point (fiber_eq p q) = p := begin induction x with a r, induction y with a' s, esimp at *, induction p, induction q using eq.rec_symm, induction s, reflexivity end definition fiber_eq_equiv_fiber {A B : Type} {f : A → B} {b : B} (x y : fiber f b) : x = y ≃ fiber (ap1_gen f (point_eq x) (point_eq y)) (idpath b) := calc x = y ≃ fiber.sigma_char f b x = fiber.sigma_char f b y : eq_equiv_fn_eq_of_equiv (fiber.sigma_char f b) x y ... ≃ Σ(p : point x = point y), point_eq x =[p] point_eq y : sigma_eq_equiv ... ≃ Σ(p : point x = point y), (point_eq x)⁻¹ ⬝ ap f p ⬝ point_eq y = idp : sigma_equiv_sigma_right (λp, calc point_eq x =[p] point_eq y ≃ point_eq x = ap f p ⬝ point_eq y : eq_pathover_equiv_Fl ... ≃ ap f p ⬝ point_eq y = point_eq x : eq_equiv_eq_symm ... ≃ (point_eq x)⁻¹ ⬝ (ap f p ⬝ point_eq y) = idp : eq_equiv_inv_con_eq_idp ... ≃ (point_eq x)⁻¹ ⬝ ap f p ⬝ point_eq y = idp : equiv_eq_closed_left _ !con.assoc⁻¹) ... ≃ fiber (ap1_gen f (point_eq x) (point_eq y)) (idpath b) : fiber.sigma_char definition loop_pfiber [constructor] {A B : Type*} (f : A →* B) : Ω (pfiber f) ≃* pfiber (Ω→ f) := pequiv_of_equiv (fiber_eq_equiv_fiber pt pt) begin induction f with f f₀, induction B with B b₀, esimp at (f,f₀), induction f₀, reflexivity end definition point_fiber_eq_equiv_fiber {A B : Type} {f : A → B} {b : B} {x y : fiber f b} (p : x = y) : point (fiber_eq_equiv_fiber x y p) = ap1_gen point idp idp p := by induction p; reflexivity lemma ppoint_loop_pfiber {A B : Type*} (f : A →* B) : ppoint (Ω→ f) ∘* loop_pfiber f ~* Ω→ (ppoint f) := phomotopy.mk (point_fiber_eq_equiv_fiber) begin induction f with f f₀, induction B with B b₀, esimp at (f,f₀), induction f₀, reflexivity end lemma ppoint_loop_pfiber_inv {A B : Type*} (f : A →* B) : Ω→ (ppoint f) ∘* (loop_pfiber f)⁻¹ᵉ* ~* ppoint (Ω→ f) := (phomotopy_pinv_right_of_phomotopy (ppoint_loop_pfiber f))⁻¹* -- rename to pfiber_pequiv_... lemma pfiber_equiv_of_phomotopy_ppoint {A B : Type*} {f g : A →* B} (h : f ~* g) : ppoint g ∘* pfiber_equiv_of_phomotopy h ~* ppoint f := begin induction f with f f₀, induction g with g g₀, induction h with h h₀, induction B with B b₀, esimp at *, induction h₀, induction g₀, fapply phomotopy.mk, { reflexivity }, { esimp [pfiber_equiv_of_phomotopy], exact !point_fiber_eq⁻¹ } end lemma pequiv_postcompose_ppoint {A B B' : Type*} (f : A →* B) (g : B ≃* B') : ppoint f ∘* fiber.pequiv_postcompose f g ~* ppoint (g ∘* f) := begin induction f with f f₀, induction g with g hg g₀, induction B with B b₀, induction B' with B' b₀', esimp at *, induction g₀, induction f₀, fapply phomotopy.mk, { reflexivity }, { esimp [pequiv_postcompose], symmetry, refine !ap_compose⁻¹ ⬝ _, apply ap_constant } end lemma pequiv_precompose_ppoint {A A' B : Type*} (f : A →* B) (g : A' ≃* A) : ppoint f ∘* fiber.pequiv_precompose f g ~* g ∘* ppoint (f ∘* g) := begin induction f with f f₀, induction g with g hg g₀, induction B with B b₀, induction A with A a₀', esimp at *, induction g₀, induction f₀, reflexivity, end definition pfiber_equiv_of_square_ppoint {A B C D : Type*} {f : A →* B} {g : C →* D} (h : A ≃* C) (k : B ≃* D) (s : k ∘* f ~* g ∘* h) : ppoint g ∘* pfiber_equiv_of_square h k s ~* h ∘* ppoint f := begin refine !passoc⁻¹* ⬝* _, refine pwhisker_right _ !pequiv_precompose_ppoint ⬝* _, refine !passoc ⬝* _, apply pwhisker_left, refine !passoc⁻¹* ⬝* _, refine pwhisker_right _ !pfiber_equiv_of_phomotopy_ppoint ⬝* _, apply pinv_right_phomotopy_of_phomotopy, refine !pequiv_postcompose_ppoint⁻¹*, end definition is_trunc_fiber [instance] (n : ℕ₋₂) {A B : Type} (f : A → B) (b : B) [is_trunc n A] [is_trunc (n.+1) B] : is_trunc n (fiber f b) := is_trunc_equiv_closed_rev n !fiber.sigma_char definition is_trunc_pfiber [instance] (n : ℕ₋₂) {A B : Type*} (f : A →* B) [is_trunc n A] [is_trunc (n.+1) B] : is_trunc n (pfiber f) := is_trunc_fiber n f pt definition fiber_equiv_of_is_contr [constructor] {A B : Type} (f : A → B) (b : B) [is_contr B] : fiber f b ≃ A := !fiber.sigma_char ⬝e !sigma_equiv_of_is_contr_right definition pfiber_pequiv_of_is_contr [constructor] {A B : Type*} (f : A →* B) [is_contr B] : pfiber f ≃* A := pequiv_of_equiv (fiber_equiv_of_is_contr f pt) idp end fiber namespace is_trunc definition center' {A : Type} (H : is_contr A) : A := center A definition pequiv_punit_of_is_contr [constructor] (A : Type*) (H : is_contr A) : A ≃* punit := pequiv_of_equiv (equiv_unit_of_is_contr A) (@is_prop.elim unit _ _ _) definition pequiv_punit_of_is_contr' [constructor] (A : Type) (H : is_contr A) : pointed.MK A (center A) ≃* punit := pequiv_punit_of_is_contr (pointed.MK A (center A)) H definition is_trunc_is_contr_fiber [instance] [priority 900] (n : ℕ₋₂) {A B : Type} (f : A → B) (b : B) [is_trunc n A] [is_trunc n B] : is_trunc n (is_contr (fiber f b)) := begin cases n, { apply is_contr_of_inhabited_prop, apply is_contr_fun_of_is_equiv, apply is_equiv_of_is_contr }, { apply is_trunc_succ_of_is_prop } end -- don't make is_prop_is_trunc an instance definition is_trunc_succ_is_trunc [instance] (n m : ℕ₋₂) (A : Type) : is_trunc (n.+1) (is_trunc m A) := !is_trunc_succ_of_is_prop end is_trunc namespace is_conn open unit trunc_index nat is_trunc pointed.ops definition is_conn_equiv_closed_rev (n : ℕ₋₂) {A B : Type} (f : A ≃ B) (H : is_conn n B) : is_conn n A := is_conn_equiv_closed n f⁻¹ᵉ _ definition is_conn_succ_intro {n : ℕ₋₂} {A : Type} (a : trunc (n.+1) A) (H2 : Π(a a' : A), is_conn n (a = a')) : is_conn (n.+1) A := begin apply @is_contr_of_inhabited_prop, { apply is_trunc_succ_intro, refine trunc.rec _, intro a, refine trunc.rec _, intro a', apply is_contr_equiv_closed !tr_eq_tr_equiv⁻¹ᵉ }, exact a end definition is_conn_pathover (n : ℕ₋₂) {A : Type} {B : A → Type} {a a' : A} (p : a = a') (b : B a) (b' : B a') [is_conn (n.+1) (B a')] : is_conn n (b =[p] b') := is_conn_equiv_closed_rev n !pathover_equiv_tr_eq _ lemma is_conn_sigma [instance] {A : Type} (B : A → Type) (n : ℕ₋₂) [HA : is_conn n A] [HB : Πa, is_conn n (B a)] : is_conn n (Σa, B a) := begin revert A B HA HB, induction n with n IH: intro A B HA HB, { apply is_conn_minus_two }, apply is_conn_succ_intro, { induction center (trunc (n.+1) A) with a, induction center (trunc (n.+1) (B a)) with b, exact tr ⟨a, b⟩ }, intro a a', refine is_conn_equiv_closed_rev n !sigma_eq_equiv _, apply IH, apply is_conn_eq, intro p, apply is_conn_pathover /- an alternative proof of the successor case -/ -- induction center (trunc (n.+1) A) with a₀, -- induction center (trunc (n.+1) (B a₀)) with b₀, -- apply is_contr.mk (tr ⟨a₀, b₀⟩), -- intro ab, induction ab with ab, induction ab with a b, -- induction tr_eq_tr_equiv n a₀ a !is_prop.elim with p, induction p, -- induction tr_eq_tr_equiv n b₀ b !is_prop.elim with q, induction q, -- reflexivity end lemma is_conn_prod [instance] (A B : Type) (n : ℕ₋₂) [is_conn n A] [is_conn n B] : is_conn n (A × B) := is_conn_equiv_closed n !sigma.equiv_prod _ lemma is_conn_fun_of_is_conn {A B : Type} (n : ℕ₋₂) (f : A → B) [HA : is_conn n A] [HB : is_conn (n.+1) B] : is_conn_fun n f := λb, is_conn_equiv_closed_rev n !fiber.sigma_char _ lemma is_conn_pfiber {A B : Type*} (n : ℕ₋₂) (f : A →* B) [HA : is_conn n A] [HB : is_conn (n.+1) B] : is_conn n (pfiber f) := is_conn_fun_of_is_conn n f pt definition is_conn_fun_trunc_elim_of_le {n k : ℕ₋₂} {A B : Type} [is_trunc n B] (f : A → B) (H : k ≤ n) [H2 : is_conn_fun k f] : is_conn_fun k (trunc.elim f : trunc n A → B) := begin apply is_conn_fun.intro, intro P, have Πb, is_trunc n (P b), from (λb, is_trunc_of_le _ H), fconstructor, { intro f' b, refine is_conn_fun.elim k H2 _ _ b, intro a, exact f' (tr a) }, { intro f', apply eq_of_homotopy, intro a, induction a with a, esimp, rewrite [is_conn_fun.elim_β] } end definition is_conn_fun_trunc_elim_of_ge {n k : ℕ₋₂} {A B : Type} [is_trunc n B] (f : A → B) (H : n ≤ k) [H2 : is_conn_fun k f] : is_conn_fun k (trunc.elim f : trunc n A → B) := begin apply is_conn_fun_of_is_equiv, have H3 : is_equiv (trunc_functor k f), from !is_equiv_trunc_functor_of_is_conn_fun, have H4 : is_equiv (trunc_functor n f), from is_equiv_trunc_functor_of_le _ H, apply is_equiv_of_equiv_of_homotopy (equiv.mk (trunc_functor n f) _ ⬝e !trunc_equiv), intro x, induction x, reflexivity end definition is_conn_fun_trunc_elim {n k : ℕ₋₂} {A B : Type} [is_trunc n B] (f : A → B) [H2 : is_conn_fun k f] : is_conn_fun k (trunc.elim f : trunc n A → B) := begin eapply algebra.le_by_cases k n: intro H, { exact is_conn_fun_trunc_elim_of_le f H }, { exact is_conn_fun_trunc_elim_of_ge f H } end lemma is_conn_fun_tr (n : ℕ₋₂) (A : Type) : is_conn_fun n (tr : A → trunc n A) := begin apply is_conn_fun.intro, intro P, fconstructor, { intro f' b, induction b with a, exact f' a }, { intro f', reflexivity } end definition is_contr_of_is_conn_of_is_trunc {n : ℕ₋₂} {A : Type} (H : is_trunc n A) (K : is_conn n A) : is_contr A := is_contr_equiv_closed (trunc_equiv n A) definition is_conn_fun_compose {n : ℕ₋₂} {A B C : Type} (g : B → C) (f : A → B) (H : is_conn_fun n g) (K : is_conn_fun n f) : is_conn_fun n (g ∘ f) := sorry definition is_contr_of_trivial_homotopy' (n : ℕ₋₂) (A : Type) [is_trunc n A] [is_conn -1 A] (H : Πk a, is_contr (π[k] (pointed.MK A a))) : is_contr A := begin assert aa : trunc -1 A, { apply center }, assert H3 : is_conn 0 A, { induction aa with a, exact H 0 a }, exact is_contr_of_trivial_homotopy n A H end definition is_conn_of_trivial_homotopy (n : ℕ₋₂) (m : ℕ) (A : Type) [is_trunc n A] [is_conn 0 A] (H : Π(k : ℕ) a, k ≤ m → is_contr (π[k] (pointed.MK A a))) : is_conn m A := begin apply is_contr_of_trivial_homotopy_nat m (trunc m A), intro k a H2, induction a with a, apply is_trunc_equiv_closed_rev, exact equiv_of_pequiv (homotopy_group_trunc_of_le (pointed.MK A a) _ _ H2), exact H k a H2 end definition is_conn_of_trivial_homotopy_pointed (n : ℕ₋₂) (m : ℕ) (A : Type*) [is_trunc n A] (H : Π(k : ℕ), k ≤ m → is_contr (π[k] A)) : is_conn m A := begin have is_conn 0 A, proof H 0 !zero_le qed, apply is_conn_of_trivial_homotopy n m A, intro k a H2, revert a, apply is_conn.elim -1, cases A with A a, exact H k H2 end /- move! -/ open sigma.ops pointed definition merely_constant {A B : Type} (f : A → B) : Type := Σb, Πa, merely (f a = b) definition merely_constant_pmap {A B : Type*} {f : A →* B} (H : merely_constant f) (a : A) : merely (f a = pt) := tconcat (tconcat (H.2 a) (tinverse (H.2 pt))) (tr (respect_pt f)) definition merely_constant_of_is_conn {A B : Type*} (f : A →* B) [is_conn 0 A] : merely_constant f := ⟨pt, is_conn.elim -1 _ (tr (respect_pt f))⟩ open sigma definition component [constructor] (A : Type*) : Type* := pType.mk (Σ(a : A), merely (pt = a)) ⟨pt, tr idp⟩ lemma is_conn_component [instance] (A : Type*) : is_conn 0 (component A) := is_contr.mk (tr pt) begin intro x, induction x with x, induction x with a p, induction p with p, induction p, reflexivity end definition component_incl [constructor] (A : Type*) : component A →* A := pmap.mk pr1 idp definition is_embedding_component_incl [instance] (A : Type*) : is_embedding (component_incl A) := is_embedding_pr1 _ definition component_intro [constructor] {A B : Type*} (f : A →* B) (H : merely_constant f) : A →* component B := begin fapply pmap.mk, { intro a, refine ⟨f a, _⟩, exact tinverse (merely_constant_pmap H a) }, exact subtype_eq !respect_pt end definition component_functor [constructor] {A B : Type*} (f : A →* B) : component A →* component B := component_intro (f ∘* component_incl A) !merely_constant_of_is_conn -- definition component_elim [constructor] {A B : Type*} (f : A →* B) (H : merely_constant f) : -- A →* component B := -- begin -- fapply pmap.mk, -- { intro a, refine ⟨f a, _⟩, exact tinverse (merely_constant_pmap H a) }, -- exact subtype_eq !respect_pt -- end definition loop_component (A : Type*) : Ω (component A) ≃* Ω A := loop_pequiv_loop_of_is_embedding (component_incl A) lemma loopn_component (n : ℕ) (A : Type*) : Ω[n+1] (component A) ≃* Ω[n+1] A := !loopn_succ_in ⬝e* loopn_pequiv_loopn n (loop_component A) ⬝e* !loopn_succ_in⁻¹ᵉ* -- lemma fundamental_group_component (A : Type*) : π₁ (component A) ≃g π₁ A := -- isomorphism_of_equiv (trunc_equiv_trunc 0 (loop_component A)) _ lemma homotopy_group_component (n : ℕ) (A : Type*) : πg[n+1] (component A) ≃g πg[n+1] A := homotopy_group_isomorphism_of_is_embedding (n+1) (component_incl A) definition is_trunc_component [instance] (n : ℕ₋₂) (A : Type*) [is_trunc n A] : is_trunc n (component A) := begin apply @is_trunc_sigma, intro a, cases n with n, { apply is_contr_of_inhabited_prop, exact tr !is_prop.elim }, { apply is_trunc_succ_of_is_prop }, end definition ptrunc_component' (n : ℕ₋₂) (A : Type*) : ptrunc (n.+2) (component A) ≃* component (ptrunc (n.+2) A) := begin fapply pequiv.MK, { exact ptrunc.elim (n.+2) (component_functor !ptr) }, { intro x, cases x with x p, induction x with a, refine tr ⟨a, _⟩, note q := trunc_functor -1 !tr_eq_tr_equiv p, exact trunc_trunc_equiv_left _ !minus_one_le_succ q }, { exact sorry }, { exact sorry } end definition ptrunc_component (n : ℕ₋₂) (A : Type*) : ptrunc n (component A) ≃* component (ptrunc n A) := begin cases n with n, exact sorry, cases n with n, exact sorry, exact ptrunc_component' n A end definition pfiber_pequiv_component_of_is_contr [constructor] {A B : Type*} (f : A →* B) [is_contr B] /- extra condition, something like trunc_functor 0 f is an embedding -/ : pfiber f ≃* component A := sorry end is_conn namespace circle /- Suppose for `f, g : A -> B` I prove a homotopy `H : f ~ g` by induction on the element in `A`. And suppose `p : a = a'` is a path constructor in `A`. Then `natural_square_tr H p` has type `square (H a) (H a') (ap f p) (ap g p)` and is equal to the square which defined H on the path constructor -/ definition natural_square_elim_loop {A : Type} {f g : S¹ → A} (p : f base = g base) (q : square p p (ap f loop) (ap g loop)) : natural_square (circle.rec p (eq_pathover q)) loop = q := begin -- refine !natural_square_eq ⬝ _, refine ap square_of_pathover !rec_loop ⬝ _, exact to_right_inv !eq_pathover_equiv_square q end definition circle_elim_constant [unfold 5] {A : Type} {a : A} {p : a = a} (r : p = idp) (x : S¹) : circle.elim a p x = a := begin induction x, { reflexivity }, { apply eq_pathover_constant_right, apply hdeg_square, exact !elim_loop ⬝ r } end end circle namespace susp definition loop_psusp_intro_natural {X Y Z : Type*} (g : psusp Y →* Z) (f : X →* Y) : loop_psusp_intro (g ∘* psusp_functor f) ~* loop_psusp_intro g ∘* f := pwhisker_right _ !ap1_pcompose ⬝* !passoc ⬝* pwhisker_left _ !loop_psusp_unit_natural⁻¹* ⬝* !passoc⁻¹* definition psusp_functor_phomotopy {A B : Type*} {f g : A →* B} (p : f ~* g) : psusp_functor f ~* psusp_functor g := begin fapply phomotopy.mk, { intro x, induction x, { reflexivity }, { reflexivity }, { apply eq_pathover, apply hdeg_square, esimp, refine !elim_merid ⬝ _ ⬝ !elim_merid⁻¹ᵖ, exact ap merid (p a), }}, { reflexivity }, end definition psusp_functor_pid (A : Type*) : psusp_functor (pid A) ~* pid (psusp A) := begin fapply phomotopy.mk, { intro x, induction x, { reflexivity }, { reflexivity }, { apply eq_pathover_id_right, apply hdeg_square, apply elim_merid }}, { reflexivity }, end definition psusp_functor_pcompose {A B C : Type*} (g : B →* C) (f : A →* B) : psusp_functor (g ∘* f) ~* psusp_functor g ∘* psusp_functor f := begin fapply phomotopy.mk, { intro x, induction x, { reflexivity }, { reflexivity }, { apply eq_pathover, apply hdeg_square, esimp, refine !elim_merid ⬝ _ ⬝ (ap_compose (psusp_functor g) _ _)⁻¹ᵖ, refine _ ⬝ ap02 _ !elim_merid⁻¹, exact !elim_merid⁻¹ }}, { reflexivity }, end definition psusp_elim_psusp_functor {A B C : Type*} (g : B →* Ω C) (f : A →* B) : psusp.elim g ∘* psusp_functor f ~* psusp.elim (g ∘* f) := begin refine !passoc ⬝* _, exact pwhisker_left _ !psusp_functor_pcompose⁻¹* end definition psusp_elim_phomotopy {A B : Type*} {f g : A →* Ω B} (p : f ~* g) : psusp.elim f ~* psusp.elim g := pwhisker_left _ (psusp_functor_phomotopy p) definition psusp_elim_natural {X Y Z : Type*} (g : Y →* Z) (f : X →* Ω Y) : g ∘* psusp.elim f ~* psusp.elim (Ω→ g ∘* f) := begin refine _ ⬝* pwhisker_left _ !psusp_functor_pcompose⁻¹*, refine !passoc⁻¹* ⬝* _ ⬝* !passoc, exact pwhisker_right _ !loop_psusp_counit_natural end end susp namespace category -- replace precategory_group with precategory_Group (the former has a universe error) definition precategory_Group.{u} [instance] [constructor] : precategory.{u+1 u} Group := begin fapply precategory.mk, { exact λG H, G →g H }, { exact _ }, { exact λG H K ψ φ, ψ ∘g φ }, { exact λG, gid G }, { intros, apply homomorphism_eq, esimp }, { intros, apply homomorphism_eq, esimp }, { intros, apply homomorphism_eq, esimp } end definition precategory_AbGroup.{u} [instance] [constructor] : precategory.{u+1 u} AbGroup := begin fapply precategory.mk, { exact λG H, G →g H }, { exact _ }, { exact λG H K ψ φ, ψ ∘g φ }, { exact λG, gid G }, { intros, apply homomorphism_eq, esimp }, { intros, apply homomorphism_eq, esimp }, { intros, apply homomorphism_eq, esimp } end open iso definition Group_is_iso_of_is_equiv {G H : Group} (φ : G →g H) (H : is_equiv (group_fun φ)) : is_iso φ := begin fconstructor, { exact (isomorphism.mk φ H)⁻¹ᵍ }, { apply homomorphism_eq, rexact left_inv φ }, { apply homomorphism_eq, rexact right_inv φ } end definition Group_is_equiv_of_is_iso {G H : Group} (φ : G ⟶ H) (Hφ : is_iso φ) : is_equiv (group_fun φ) := begin fapply adjointify, { exact group_fun φ⁻¹ʰ }, { note p := right_inverse φ, exact ap010 group_fun p }, { note p := left_inverse φ, exact ap010 group_fun p } end definition Group_iso_equiv (G H : Group) : (G ≅ H) ≃ (G ≃g H) := begin fapply equiv.MK, { intro φ, induction φ with φ φi, constructor, exact Group_is_equiv_of_is_iso φ _ }, { intro v, induction v with φ φe, constructor, exact Group_is_iso_of_is_equiv φ _ }, { intro v, induction v with φ φe, apply isomorphism_eq, reflexivity }, { intro φ, induction φ with φ φi, apply iso_eq, reflexivity } end definition Group_props.{u} {A : Type.{u}} (v : (A → A → A) × (A → A) × A) : Prop.{u} := begin induction v with m v, induction v with i o, fapply trunctype.mk, { exact is_set A × (Πa, m a o = a) × (Πa, m o a = a) × (Πa b c, m (m a b) c = m a (m b c)) × (Πa, m (i a) a = o) }, { apply is_trunc_of_imp_is_trunc, intro v, induction v with H v, have is_prop (Πa, m a o = a), from _, have is_prop (Πa, m o a = a), from _, have is_prop (Πa b c, m (m a b) c = m a (m b c)), from _, have is_prop (Πa, m (i a) a = o), from _, apply is_trunc_prod } end definition Group.sigma_char2.{u} : Group.{u} ≃ Σ(A : Type.{u}) (v : (A → A → A) × (A → A) × A), Group_props v := begin fapply equiv.MK, { intro G, refine ⟨G, _⟩, induction G with G g, induction g with m s ma o om mo i mi, repeat (fconstructor; do 2 try assumption), }, { intro v, induction v with x v, induction v with y v, repeat induction y with x y, repeat induction v with x v, constructor, fconstructor, repeat assumption }, { intro v, induction v with x v, induction v with y v, repeat induction y with x y, repeat induction v with x v, reflexivity }, { intro v, repeat induction v with x v, reflexivity }, end open is_trunc section local attribute group.to_has_mul group.to_has_inv [coercion] theorem inv_eq_of_mul_eq {A : Type} (G H : group A) (p : @mul A G ~2 @mul A H) : @inv A G ~ @inv A H := begin have foo : Π(g : A), @inv A G g = (@inv A G g * g) * @inv A H g, from λg, !mul_inv_cancel_right⁻¹, cases G with Gs Gm Gh1 G1 Gh2 Gh3 Gi Gh4, cases H with Hs Hm Hh1 H1 Hh2 Hh3 Hi Hh4, change Gi ~ Hi, intro g, have p' : Gm ~2 Hm, from p, calc Gi g = Hm (Hm (Gi g) g) (Hi g) : foo ... = Hm (Gm (Gi g) g) (Hi g) : by rewrite p' ... = Hm G1 (Hi g) : by rewrite Gh4 ... = Gm G1 (Hi g) : by rewrite p' ... = Hi g : Gh2 end theorem one_eq_of_mul_eq {A : Type} (G H : group A) (p : @mul A (group.to_has_mul G) ~2 @mul A (group.to_has_mul H)) : @one A (group.to_has_one G) = @one A (group.to_has_one H) := begin cases G with Gm Gs Gh1 G1 Gh2 Gh3 Gi Gh4, cases H with Hm Hs Hh1 H1 Hh2 Hh3 Hi Hh4, exact (Hh2 G1)⁻¹ ⬝ (p H1 G1)⁻¹ ⬝ Gh3 H1, end end open prod.ops definition group_of_Group_props.{u} {A : Type.{u}} {m : A → A → A} {i : A → A} {o : A} (H : Group_props (m, (i, o))) : group A := ⦃group, mul := m, inv := i, one := o, is_set_carrier := H.1, mul_one := H.2.1, one_mul := H.2.2.1, mul_assoc := H.2.2.2.1, mul_left_inv := H.2.2.2.2⦄ theorem Group_eq_equiv_lemma2 {A : Type} {m m' : A → A → A} {i i' : A → A} {o o' : A} (H : Group_props (m, (i, o))) (H' : Group_props (m', (i', o'))) : (m, (i, o)) = (m', (i', o')) ≃ (m ~2 m') := begin have is_set A, from pr1 H, apply equiv_of_is_prop, { intro p, exact apd100 (eq_pr1 p)}, { intro p, apply prod_eq (eq_of_homotopy2 p), apply prod_eq: esimp [Group_props] at *; esimp, { apply eq_of_homotopy, exact inv_eq_of_mul_eq (group_of_Group_props H) (group_of_Group_props H') p }, { exact one_eq_of_mul_eq (group_of_Group_props H) (group_of_Group_props H') p }} end open sigma.ops theorem Group_eq_equiv_lemma {G H : Group} (p : (Group.sigma_char2 G).1 = (Group.sigma_char2 H).1) : ((Group.sigma_char2 G).2 =[p] (Group.sigma_char2 H).2) ≃ (is_mul_hom (equiv_of_eq (proof p qed : Group.carrier G = Group.carrier H))) := begin refine !sigma_pathover_equiv_of_is_prop ⬝e _, induction G with G g, induction H with H h, esimp [Group.sigma_char2] at p, induction p, refine !pathover_idp ⬝e _, induction g with s m ma o om mo i mi, induction h with σ μ μa ε εμ με ι μι, exact Group_eq_equiv_lemma2 (Group.sigma_char2 (Group.mk G (group.mk s m ma o om mo i mi))).2.2 (Group.sigma_char2 (Group.mk G (group.mk σ μ μa ε εμ με ι μι))).2.2 end definition isomorphism.sigma_char (G H : Group) : (G ≃g H) ≃ Σ(e : G ≃ H), is_mul_hom e := begin fapply equiv.MK, { intro φ, exact ⟨equiv_of_isomorphism φ, to_respect_mul φ⟩ }, { intro v, induction v with e p, exact isomorphism_of_equiv e p }, { intro v, induction v with e p, induction e, reflexivity }, { intro φ, induction φ with φ H, induction φ, reflexivity }, end definition Group_eq_equiv (G H : Group) : G = H ≃ (G ≃g H) := begin refine (eq_equiv_fn_eq_of_equiv Group.sigma_char2 G H) ⬝e _, refine !sigma_eq_equiv ⬝e _, refine sigma_equiv_sigma_right Group_eq_equiv_lemma ⬝e _, transitivity (Σ(e : (Group.sigma_char2 G).1 ≃ (Group.sigma_char2 H).1), @is_mul_hom _ _ _ _ (to_fun e)), apply sigma_ua, exact !isomorphism.sigma_char⁻¹ᵉ end definition to_fun_Group_eq_equiv {G H : Group} (p : G = H) : Group_eq_equiv G H p ~ isomorphism_of_eq p := begin induction p, reflexivity end definition Group_eq2 {G H : Group} {p q : G = H} (r : isomorphism_of_eq p ~ isomorphism_of_eq q) : p = q := begin apply eq_of_fn_eq_fn (Group_eq_equiv G H), apply isomorphism_eq, intro g, refine to_fun_Group_eq_equiv p g ⬝ r g ⬝ (to_fun_Group_eq_equiv q g)⁻¹, end definition Group_eq_equiv_Group_iso (G₁ G₂ : Group) : G₁ = G₂ ≃ G₁ ≅ G₂ := Group_eq_equiv G₁ G₂ ⬝e (Group_iso_equiv G₁ G₂)⁻¹ᵉ definition category_Group.{u} : category Group.{u} := category.mk precategory_Group begin intro G H, apply is_equiv_of_equiv_of_homotopy (Group_eq_equiv_Group_iso G H), intro p, induction p, fapply iso_eq, apply homomorphism_eq, reflexivity end definition category_AbGroup : category AbGroup := category.mk precategory_AbGroup sorry definition Grp.{u} [constructor] : Category := category.Mk Group.{u} category_Group definition AbGrp [constructor] : Category := category.Mk AbGroup category_AbGroup end category namespace sphere definition psphere_pequiv_iterate_psusp (n : ℕ) : psphere n ≃* iterate_psusp n pbool := begin induction n with n e, { exact psphere_pequiv_pbool }, { exact psusp_pequiv e } end -- definition constant_sphere_map_sphere {n m : ℕ} (H : n < m) (f : S* n →* S* m) : -- f ~* pconst (S* n) (S* m) := -- begin -- assert H : is_contr (Ω[n] (S* m)), -- { apply homotopy_group_sphere_le, }, -- apply phomotopy_of_eq, -- apply eq_of_fn_eq_fn !psphere_pmap_pequiv, -- apply @is_prop.elim -- end end sphere definition image_pathover {A B : Type} (f : A → B) {x y : B} (p : x = y) (u : image f x) (v : image f y) : u =[p] v := begin apply is_prop.elimo end section injective_surjective open trunc fiber image variables {A B C : Type} [is_set A] [is_set B] [is_set C] (f : A → B) (g : B → C) (h : A → C) (H : g ∘ f ~ h) include H definition is_embedding_factor : is_embedding h → is_embedding f := begin induction H using homotopy.rec_on_idp, intro E, fapply is_embedding_of_is_injective, intro x y p, fapply @is_injective_of_is_embedding _ _ _ E _ _ (ap g p) end definition is_surjective_factor : is_surjective h → is_surjective g := begin induction H using homotopy.rec_on_idp, intro S, intro c, note p := S c, induction p, apply tr, fapply fiber.mk, exact f a, exact p end end injective_surjective definition AbGroup_of_Group.{u} (G : Group.{u}) (H : Π x y : G, x * y = y * x) : AbGroup.{u} := begin induction G, fapply AbGroup.mk, assumption, exact ⦃ab_group, struct, mul_comm := H⦄ end definition trivial_ab_group : AbGroup.{0} := begin fapply AbGroup_of_Group Trivial_group, intro x y, reflexivity end definition trivial_homomorphism (A B : AbGroup) : A →g B := begin fapply homomorphism.mk, exact λ a, 1, intros, symmetry, exact one_mul 1, end definition from_trivial_ab_group (A : AbGroup) : trivial_ab_group →g A := trivial_homomorphism trivial_ab_group A definition is_embedding_from_trivial_ab_group (A : AbGroup) : is_embedding (from_trivial_ab_group A) := begin fapply is_embedding_of_is_injective, intro x y p, induction x, induction y, reflexivity end definition to_trivial_ab_group (A : AbGroup) : A →g trivial_ab_group := trivial_homomorphism A trivial_ab_group /- Stuff added by Jeremy -/ definition exists.elim {A : Type} {p : A → Type} {B : Type} [is_prop B] (H : Exists p) (H' : ∀ (a : A), p a → B) : B := trunc.elim (sigma.rec H') H definition image.elim {A B : Type} {f : A → B} {C : Type} [is_prop C] {b : B} (H : image f b) (H' : ∀ (a : A), f a = b → C) : C := begin refine (trunc.elim _ H), intro H'', cases H'' with a Ha, exact H' a Ha end definition image.intro {A B : Type} {f : A → B} {a : A} {b : B} (h : f a = b) : image f b := begin apply trunc.merely.intro, apply fiber.mk, exact h end definition total_image {A B : Type} (f : A → B) : Type := sigma (image f) local attribute is_prop.elim_set [recursor 6] definition total_image.elim_set [unfold 8] {A B : Type} {f : A → B} {C : Type} [is_set C] (g : A → C) (h : Πa a', f a = f a' → g a = g a') (x : total_image f) : C := begin induction x with b v, induction v using is_prop.elim_set with x x x', { induction x with a p, exact g a }, { induction x with a p, induction x' with a' p', induction p', exact h _ _ p } end definition total_image.rec [unfold 7] {A B : Type} {f : A → B} {C : total_image f → Type} [H : Πx, is_prop (C x)] (g : Πa, C ⟨f a, image.mk a idp⟩) (x : total_image f) : C x := begin induction x with b v, refine @image.rec _ _ _ _ _ (λv, H ⟨b, v⟩) _ v, intro a p, induction p, exact g a end definition image.equiv_exists {A B : Type} {f : A → B} {b : B} : image f b ≃ ∃ a, f a = b := trunc_equiv_trunc _ (fiber.sigma_char _ _) -- move to homomorphism.hlean section theorem eq_zero_of_eq_zero_of_is_embedding {A B : Type} [add_group A] [add_group B] {f : A → B} [is_add_hom f] [is_embedding f] {a : A} (h : f a = 0) : a = 0 := have f a = f 0, by rewrite [h, respect_zero], show a = 0, from is_injective_of_is_embedding this end /- put somewhere in algebra -/ structure Ring := (carrier : Type) (struct : ring carrier) attribute Ring.carrier [coercion] attribute Ring.struct [instance] namespace int definition ring_int : Ring := Ring.mk ℤ _ notation `rℤ` := ring_int definition max0 : ℤ → ℕ | (of_nat n) := n | (-[1+ n]) := 0 lemma le_max0 : Π(n : ℤ), n ≤ of_nat (max0 n) | (of_nat n) := proof le.refl n qed | (-[1+ n]) := proof unit.star qed lemma le_of_max0_le {n : ℤ} {m : ℕ} (h : max0 n ≤ m) : n ≤ of_nat m := le.trans (le_max0 n) (of_nat_le_of_nat_of_le h) end int namespace set_quotient definition is_prop_set_quotient {A : Type} (R : A → A → Prop) [is_prop A] : is_prop (set_quotient R) := begin apply is_prop.mk, intro x y, induction x using set_quotient.rec_prop, induction y using set_quotient.rec_prop, exact ap class_of !is_prop.elim end local attribute is_prop_set_quotient [instance] definition is_trunc_set_quotient [instance] (n : ℕ₋₂) {A : Type} (R : A → A → Prop) [is_trunc n A] : is_trunc n (set_quotient R) := begin cases n with n, { apply is_contr_of_inhabited_prop, exact class_of !center }, cases n with n, { apply _ }, apply is_trunc_succ_succ_of_is_set end definition is_equiv_class_of [constructor] {A : Type} [is_set A] (R : A → A → Prop) (p : Π⦃a b⦄, R a b → a = b) : is_equiv (@class_of A R) := begin fapply adjointify, { intro x, induction x, exact a, exact p H }, { intro x, induction x using set_quotient.rec_prop, reflexivity }, { intro a, reflexivity } end definition equiv_set_quotient [constructor] {A : Type} [is_set A] (R : A → A → Prop) (p : Π⦃a b⦄, R a b → a = b) : A ≃ set_quotient R := equiv.mk _ (is_equiv_class_of R p) end set_quotient -- should be in pushout namespace pushout variables {TL BL TR : Type} (f : TL → BL) (g : TL → TR) protected theorem elim_inl {P : Type} (Pinl : BL → P) (Pinr : TR → P) (Pglue : Π(x : TL), Pinl (f x) = Pinr (g x)) {b b' : BL} (p : b = b') : ap (pushout.elim Pinl Pinr Pglue) (ap inl p) = ap Pinl p := by cases p; reflexivity protected theorem elim_inr {P : Type} (Pinl : BL → P) (Pinr : TR → P) (Pglue : Π(x : TL), Pinl (f x) = Pinr (g x)) {b b' : TR} (p : b = b') : ap (pushout.elim Pinl Pinr Pglue) (ap inr p) = ap Pinr p := by cases p; reflexivity end pushout -- should be in prod namespace prod open prod.ops definition pair_eq_eta {A B : Type} {u v : A × B} (p : u = v) : pair_eq (p..1) (p..2) = prod.eta u ⬝ p ⬝ (prod.eta v)⁻¹ := by induction p; induction u; reflexivity definition prod_eq_eq {A B : Type} {u v : A × B} {p₁ q₁ : u.1 = v.1} {p₂ q₂ : u.2 = v.2} (α₁ : p₁ = q₁) (α₂ : p₂ = q₂) : prod_eq p₁ p₂ = prod_eq q₁ q₂ := by cases α₁; cases α₂; reflexivity definition prod_eq_assemble {A B : Type} {u v : A × B} {p q : u = v} (α₁ : p..1 = q..1) (α₂ : p..2 = q..2) : p = q := (prod_eq_eta p)⁻¹ ⬝ prod.prod_eq_eq α₁ α₂ ⬝ prod_eq_eta q definition eq_pr1_concat {A B : Type} {u v w : A × B} (p : u = v) (q : v = w) : (p ⬝ q)..1 = p..1 ⬝ q..1 := by cases q; reflexivity definition eq_pr2_concat {A B : Type} {u v w : A × B} (p : u = v) (q : v = w) : (p ⬝ q)..2 = p..2 ⬝ q..2 := by cases q; reflexivity end prod